Quality Assurance Project Plan Lower Colorado River Authority

PO Box 220 Austin, Texas Zip 78767

Clean Rivers Program

Water Quality Planning Division

Texas Commission on Environmental Quality

P.O. Box 13087, MC 234

Austin, Texas 78711-3087

Effective Period: FY 2022 to FY 2023

Questions concerning this QAPP should be directed to: Lisa Benton Lower Colorado River Authority PO Box 220 Austin, Texas Zip 78767 (512) 578-2151 lisa.benton@lcra.org

Approval Page A1

Texas Commission on Environmental Quality

Water Quality Planning Division

The the
Vyla Cirton Managar

9/21/2021

Rebecca DuPont

09/21/2021

Kyle Girten, Manager Water Quality Monitoring and Assessment

Date

Rebecca DuPont, Work Leader Clean Rivers Program

Date

Rebecca DuPont

09/21/2021

Rebecca Dufont

09/21/2021

Rebecca DuPont,

Section

Date

Acting Project Quality Assurance Specialist

Clean Rivers Program

Rebecca DuPont, Project Manager Clean Rivers Program

Date

Cathy S. Anderson

09/21/2021

Cathy Anderson, Team Leader Data Management and Analysis Date

Monitoring Division

haraf Colema

TCEQ Quality Assurance Manager

Sharon Coleman

09/22/2021

Date

Dana Squires Lead CRP Quality Assurance Specialist

Dana D.

09/21/2021 Date

Lower Colorado River Authority

Lisa Benton

9/14/21

Garreth Hays 9/14/2021

Lisa Benton

Date

Garreth Hays Date

Lower Colorado River Authority

Project Manager Acting Quality Assurance Officer Lower Colorado River Authority **Acting Data Manager**

Upper Colorado River Authority

Scott McWilliams

Upper Colorado River Authority

Project Manager

Quality Assurance Officer

Upper Colorado River Authority

Data Manager

City of Austin

Andrew Clamann City of Austin

Date

9/20/2021

Project Manager

Environmental Laboratory Services

Environmental Laboratory Services

Laboratory Manager

Angel Mata

Environmental Laboratory Services

Quality Assurance Officer

Lower Colorado River Authority QAPP Last revised on September 8, 2021

Page 3 LCRAFY2223CRPQAPP_Final.docx

Jason Woods Environmental Laboratory Services Project Manager

DHL Analytical

09/14/2021

John Dupont Date DHL Analytical

Quality Assurance Manager Laboratory General Manager

09/14/2021

Sherri Herschmann

DHL Analytical

Date

A2 Table of Contents

A1	Approval Page	2
A2	Table of Contents	6
List	of Acronyms	7
А3	Distribution List	
A4	Project/Task Organization	
	Figure A4.1. Organization Chart - Lines of Communication	14
A5	Problem Definition/Background	15
A6	Project/Task Description	
A7	Quality Objectives and Criteria	18
A8	Special Training/Certification	
A9	Documents and Records	
	Table A9.1 Project Documents and Records	
B1	Sampling Process Design	23
B2	Sampling Methods	
	Table B2.1 Sample Storage, Preservation and Handling Requirements	
В3	Sample Handling and Custody	25
B4	Analytical Methods	26
B5	Quality Control	
B6	Instrument/Equipment Testing, Inspection, and Maintenance	31
B7	Instrument Calibration and Frequency	31
B8	Inspection/Acceptance of Supplies and Consumables	31
B9	Acquired Data	31
B10	Data Management	
C1	Assessments and Response Actions	
	Table C1.1 Assessments and Response Requirements	
	Figure C1.1 Corrective Action Process for Deficiencies	37
C_2	Reports to Management	38
	Table C2.1 QA Management Reports	38
D1	Data Review, Verification, and Validation	
D_2	Verification and Validation Methods	
	Table D2.1: Data Review Tasks	
D3	Reconciliation with User Requirements	
	endix A: Measurement Performance Specifications (Table A7.1-x)	
	endix B: Task 3 Work Plan & Sampling Process Design and Monitoring Schedule (Plan)	
App	endix C: Station Location Maps	79
	endix D: Field Data Sheets	
	endix E: Chain of Custody Forms	
App	endix F: Data Review Checklist and Summary	96

List of Acronyms

AWRL **Ambient Water Reporting Limit Best Management Practices BMP** Corrective Action Plan CAP CE **Collecting Entity** COA City of Austin COC Chain of Custody **CRP** Clean Rivers Program **DHL** Analytical Laboratory DHL

DM Data Manager

DMRG Surface Water Quality Monitoring Data Management Reference Guide, July 2019, or most

recent version

DM&A Data Management and Analysis ELS Environmental Laboratory Services

EPA United States Environmental Protection Agency

FSDB City of Austin Field Sampling Data Base

FY Fiscal Year

GIS Geographical Information System

GPS Global Positioning System
LCRA Lower Colorado River Authority
LCS Laboratory Control Sample

LCSD Laboratory Control Sample Duplicate

LIMS Laboratory Information Management System

LOD Limit of Detection
LOQ Limit of Quantitation
MT Monitoring Type

NELAP National Environmental Laboratory Accreditation Program

QA Quality Assurance QM Quality Manual

QAO Quality Assurance Officer QAPP Quality Assurance Project Plan QAS Quality Assurance Specialist

QC Quality Control

QMP Quality Management Plan
RT Routine Monitoring
SE Submitting Entity
SLOC Station Location

SOP Standard Operating Procedure SWQM Surface Water Quality Monitoring

SWQMIS Surface Water Quality Monitoring Information System

TMDL Total Maximum Daily Load

TCEQ Texas Commission on Environmental Quality

TNI The NELAC Institute

TSWQS Texas Surface Water Quality Standards

VOA Volatile Organic Analytes

UCRA Upper Colorado River Authority

A3 Distribution List

Texas Commission on Environmental Quality P.O. Box 13087 Austin, Texas 78711-3087

Rebecca DuPont, Project Manager Clean Rivers Program MC-234 (512) 239-6697 rebecca.dupont@tceq.texas.gov

Dana Squires Lead CRP Quality Assurance Specialist MC-165 (512) 239-0011 dana.squires@tceq.texas.gov

Cathy Anderson Team Leader, Data Management and Analysis MC-234 (512) 239-1805 cathy.anderson@tceq.texas.gov

Lower Colorado River Authority PO Box 220 Austin, Texas 78767

Lisa Benton, Project Manager and Acting Quality Assurance Officer (512) 578-2151/lisa.benton@lcra.org

Garreth Hays, Acting Data Manager (512) 578-2371/garreth.hays@lcra.org

Upper Colorado River Authority 512 Orient San Angelo, Texas 78767

Scott McWilliams, Project Manager (325) 565-0565/scottm@ucratx.org

Lexi Woods, Data Manager (325) 565-0565/lexiw@ucratx.org

City of Austin #11 505 Barton Springs Rd Austin, Texas 78704

Andrew Clamann Project Manager (325) 974-2550/Andrew.clamann@austintexas.gov

Environmental Laboratory Services 3505 Montopolis Dr Austin, Texas 78744

Dale Jurecka, Laboratory Manager (512) 578-3200/dale.jurecka@lcra.org

Angel Mata, Quality Manager (512) 578-3200/angel.mata@lcra.org

Jason Woods, Project Manager (512)730-5339/jason.woods@lcra.org

DHL Analytical Laboratory 2300 Double Creek Dr Round Rock, Texas 78664

John Dupont, Manager (512) 388-8222/dupont@dhlanalytical

Sherri Herschmann, Quality Assurance Officer (512) 388-8222 /sh@dhlanalyitical

The LCRA will provide copies of this project plan and any amendments or appendices of this plan to each person on this list and to each sub-tier project participant, e.g., subcontractors, subparticipants, or other units of government. The LCRA will document distribution of the plan and any amendments and appendices, maintain this documentation as part of the project's quality assurance records, and ensure the documentation is available for review.

A4 Project/Task Organization

Description of Responsibilities

TCEQ

Rebecca DuPont CRP Work Leader

Responsible for Texas Commission on Environmental Quality (TCEQ) activities supporting the development and implementation of the Texas Clean Rivers Program (CRP). Responsible for verifying that the TCEQ Quality Management Plan (QMP) is followed by CRP staff. Supervises TCEQ CRP staff. Reviews and responds to any deficiencies, corrective actions, or findings related to the area of responsibility. Oversees the development of Quality Assurance (QA) guidance for the CRP. Reviews and approves all QA audits, corrective actions, , reports, work plans, contracts, QAPPs, and TCEQ Quality Management Plan. Enforces corrective action, as required, where QA protocols are not met. Ensures CRP personnel are fully trained.

Dana Squires

CRP Lead Quality Assurance Specialist

Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Assists program and project manager in developing and implementing quality system. Serves on planning team for CRP special projects.. Prepares and distributes annual audit plans. Conducts monitoring systems audits of Planning Agencies. Concurs with and monitors implementation of corrective actions. Conveys QA problems to appropriate management. Recommends that work be stopped in order to safeguard programmatic objectives, worker safety, public health, or environmental protection. Ensures maintenance of audit records for the CRP.

Rebecca Dupont CRP Project Manager

Responsible for the development, implementation, and maintenance of CRP contracts. Tracks, reviews, and approves deliverables. Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Coordinates the review and approval of CRP QAPPs Ensures maintenance of QAPPs Assists CRP Lead QA Specialist in conducting Basin Planning Agency audits. Verifies QAPPs are being followed by contractors and that projects are producing data of known quality. Coordinates project planning with the Basin Planning Agency Project Manager. Reviews and approves data and reports produced by contractors. Notifies QA Specialists of circumstances which may adversely affect the quality of data derived from the collection and analysis of samples. Develops, enforces, and monitors corrective action measures to ensure contractors meet deadlines and scheduled commitments.

Cathy Anderson

Team Leader, Data Management and Analysis (DM&A) Team

Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Ensures DM&A staff perform data management-related tasks.

Sarah Kirkland

CRP Data Manager, DM&A Team

Responsible for coordination and tracking of CRP data sets from initial submittal through CRP Project Manager review and approval. Ensures that data are reported following instructions in the Data Management Reference Guide, July 2019 or most current version (DMRG). Runs automated data validation checks in the Surface Water Quality Management Information System (SWQMIS) and coordinates data verification and error correction with CRP Project Managers. Generates SWQMIS summary reports to assist CRP Project Managers' data review. Identifies data anomalies and inconsistencies. Provides training and guidance to CRP and Planning Agencies on technical data issues to ensure that data are submitted according to documented procedures. Reviews QAPPs for valid stream monitoring stations. Checks validity of parameter codes, submitting entity code(s), collecting entity code(s), and monitoring type code(s). Develops and maintains data management-related SOPs for CRP data management. Coordinates and processes data correction requests. Participates in the development, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP).

Rebecca DuPont

Acting CRP Project Quality Assurance Specialist

Serves as liaison between CRP management and TCEQ QA management. Participates in the development, approval, implementation, and maintenance of written QA standards (e.g., Program Guidance, SOPs, QAPPs, QMP). Serves on planning team for CRP special projects and reviews QAPPs in coordination with other CRP staff. Coordinates documentation and implementation of corrective action for the CRP.

Lower Colorado River Authority

Lisa Benton

LCRA Project Manager

Responsible for implementing and monitoring CRP requirements in contracts, QAPPs, and QAPP amendments and appendices. Coordinates basin planning activities and work of basin partners. Ensures monitoring systems audits are conducted to ensure QAPPs are followed by basin planning agency participants and that projects are producing data of known quality. Ensures that subparticipants are qualified to perform contracted work. Ensures CRP project managers and/or QA Specialists are notified of deficiencies and corrective actions, and that issues are resolved. Responsible for validating that data collected are acceptable for reporting to the TCEQ.

Lisa Benton

LCRA Acting Quality Assurance Officer

Responsible for coordinating the implementation of the QA program. Responsible for writing and maintaining the QAPP and monitoring its implementation. Responsible for maintaining records of QAPP distribution, including appendices and amendments. Responsible for maintaining written records of sub-tier commitment to requirements specified in this QAPP. Responsible for identifying, receiving, and maintaining project QA records. Responsible for coordinating with the TCEQ QAS to resolve QA-related issues. Notifies the LCRA Project Manager of particular circumstances which may adversely affect the quality of data. Coordinates and monitors deficiencies and corrective action. Coordinates and maintains records of data verification and validation. Coordinates the research and review of technical QA material and data related to water quality monitoring system design and analytical techniques. Conducts monitoring systems audits on project participants to determine compliance with project and program specifications, issues written reports, and follows through on findings. Ensures that field staff is properly trained and that training records are maintained.

Garreth Hays

LCRA Data Manager

Responsible for ensuring that field data are properly reviewed and verified. Responsible for the transfer of basin quality-assured water quality data to the TCEQ in a format compatible with SWQMIS. Maintains quality-assured data on LCRA internet sites.

Upper Colorado River Authority

Scott McWilliams

UCRA Project Manager, QA Officer and Field Staff

Responsible for implementing the CRP requirements in the contract and in the QAPP. Ensures that UCRA staff are qualified to perform CRP activities and that they receive necessary and required training. Ensures that UCRA participates in monitoring system and fiscal audits as required. Responsible for overall quality control and quality assurance of samples, analytical results and data for samples collected by UCRA. Responsible to ensure that staff are adequately trained. Performs monitoring as specified in the latest edition of *SWQM Procedures*.

Lexi Woods

UCRA Data Manager and Field Staff

Responsible for the compilation and transmittal of QAPP-listed UCRA data and data review checklist to Lower Colorado River Authority. Responsible for verifying and validating data. Ensure that only acceptable data, as specified in the QAPP, are reported to the Lower Colorado River Authority. Responsible for corrective action

communication with the Lower Colorado River Authority QAO. Responsible to ensure that staff are adequately trained. Performs monitoring as specified in the latest edition of *SWQM Procedures*.

City of Austin

Andrew Clamann

COA Project Manager, Quality Assurance Officer and Field Coordinator

Responsible for overall performance, administration and management of COA's project participation. Responsible for field team activities and that field teams receive necessary training. Responsible for overall quality control and quality assurance of samples and analytical results of the samples collected by COA. Responsible for verifying and validating data. Ensures that only acceptable data, as specified in the QAPP, are reported to the Lower Colorado River Authority. Responsible for documenting corrective actions, coordinating audit and QA activities, and responding to audit reviews by Lower Colorado River Authority. Coordinates activities with City of Austin field staff, LCRA PM, LCRA DM/QAO and ELS laboratory staff. Ensures that field staff are properly trained and that training records are maintained. Coordinates field activities.

Environmental Laboratory Services

Dale Jurecka ELS Manager

Responsible for the overall performance, administration, and reporting of analyses performed by Lower Colorado River Authority's ELS. Responsible for supervision of laboratory and field personnel involved in generating analytical data for the project. Ensures that laboratory and field personnel have adequate training and a thorough knowledge of the QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately.

Angel Mata

ELS Quality Assurance Manager

Responsible for the overall quality control and quality assurance of analyses performed by Lower Colorado River Authority's ELS. Monitors the implementation of the QM/QAPP within the laboratory to ensure complete compliance with QA data quality objectives, as defined by the contract and in the QAPP. Conducts in-house audits to ensure compliance with written SOPs and to identify potential problems. Responsible for supervising and verifying all aspects of the QA/QC in the laboratory.

Jason Woods

ELS Project Manager and Field Services Team Leader

Responsible for analyses performed by Lower Colorado River Authority ELS for UCRA's portions of this project. Responsible for project set up in LIMS. Responsible for laboratory and field staff corrective action communication with the Lower Colorado River Authority QAO. Makes ELS data available to the Lower Colorado River Authority DM. Notifies Lower Colorado River Authority and UCRA of laboratory analysis issues that may invalidate data. Responsible for coordination of the field team monitoring efforts. Ensures that samples are collected according to methods specified in the QAPP and the latest edition of the SWQM Procedures. Ensures that training records for ELS staff are created and maintained.

Ariana Dean ELS Project Manager

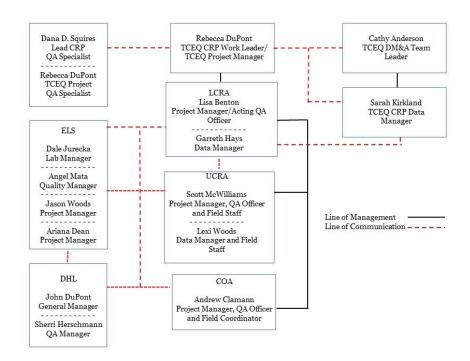
Responsible for analyses performed by Lower Colorado River Authority ELS for COA. Serves as a backup for UCRA analyses. Responsible for project set up in LIMS. Responsible for corrective action and all communication with COA. Makes ELS data available to the subparticipant. Notifies COA of laboratory analysis issues that may invalidate data.

DHL ANALYTICAL LABORATORY

John DuPont

DHL Analytical Laboratory, Laboratory General Manager

Responsible for overall performance, administration, and reporting of analyses performed by DHL Analytical Laboratory. Responsible for supervision of laboratory personnel involved in generating analytical data for the project. Ensures that laboratory personnel have adequate training and a thorough knowledge of this QAPP and related SOPs. Responsible for oversight of all laboratory operations ensuring that all QA/QC requirements are met, documentation is complete and adequately maintained, and results are reported accurately. Additionally, the lab director will review and verify all field and laboratory data for integrity and continuity, reasonableness and conformance to project requirements, and then validated against the data quality objectives listed in Appendix A of this QAPP.


Sherri Herschmann

DHL Analytical Laboratory, Quality Assurance Manager

Maintains operating procedures that are in compliance with this QAPP.

Project Organization Chart

Figure A4.1. Organization Chart - Lines of Communication

A5 Problem Definition/Background

In 1991, the Texas Legislature passed the Texas Clean River Act (Senate Bill 818) in response to growing concerns that water resource issues were not being pursued in an integrated, systematic manner. The act requires that ongoing water quality assessments be conducted for each river basin in Texas, an approach that integrates water quality issues within the watershed. The CRP legislation mandates that each river authority (or local governing entity) shall submit quality-assured data collected in the river basin to the commission. Quality-assured data in the context of the legislation means data that comply with TCEQ rules for surface water quality monitoring (SWQM) programs, including rules governing the methods under which water samples are collected and analyzed and data from those samples are assessed and maintained. This QAPP addresses the program developed between the LCRA and the TCEQ to carry out the activities mandated by the legislation. The QAPP was developed and will be implemented in accordance with provisions of the TCEQ Quality Management Plan, January 8 2019 or most recent version (QMP).

The purpose of this QAPP is to clearly delineate LCRA QA policy, management structure, and procedures which will be used to implement the QA requirements necessary to verify and validate the surface water quality data collected. The QAPP is reviewed by the TCEQ to help ensure that data generated for the purposes described above are of known and documented quality, deemed acceptable for their intended use. This process will ensure that data collected under this QAPP and submitted to SWQMIS have been collected and managed in a way that guarantees its reliability and therefore can be used in water quality assessments, total maximum daily load (TMDL) and water quality standards development, permit decisions, and other program activities deemed appropriate by the TCEQ. Project results will be used to support the achievement of CRP objectives, as contained in the *Clean Rivers Program Guidance and Reference Guide FY 2022-2023*.

Goals for this basin-wide monitoring program are to provide data to help determine standards attainment and to document water quality conditions, changes and trends. Additionally, the data will allow for the evaluation of pollutant source impacts, distributions and impairments. These goals will be accomplished by analysis of data collected and by a comparison with historical data, land use and waste discharge information.

Monitoring objectives are to compile data that are accurate, precise, scientifically valid, legally defensible and complete within a database that is available to agencies, entities and citizens interested in water quality. Additionally, the monitoring plans are designed to give a regularly spaced temporal and longitudinal perspective of water quality in the basin.

Table A5.1, shows which analytes are typically collected by each monitoring entity. The groups are arranged similarly to Table A7 found in Appendix A. An "X" in the column indicates that the analyte is monitored by the entity shown.

Table A5.1 Analyte Groups and Monitoring Entities

Analyte Group and Analyte	LCRA	UCRA	COA
Field and Flow			
Temperature	X	X	X
Dissolved Oxygen	X	X	X
D.O. (% saturation)	X	X	
Specific Conductance	X	X	X
pН	X	X	X
Secchi disk transparency	X	X	X
Reservoir stage	X	X	
Reservoir % full	X	X	
Present weather	X	X	
Wind intensity	X	X	
Days since significant precipitation	X	X	X
Stream flow	X	X	X
Flow severity	X	X	X
Turbidity	X	X	
Flow estimate	X	X	X

Flow method	X	X	X
Conventional			
TSS	X		X
Ammonia N	X		X
Total Kjeldahl N	X	X	X
Nitrite plus Nitrate N	X	X	X
Total Phosphorus P	X	X	X
Orthophosphate P	X		X
Chloride	X	X	X
Sulfate	X	X	X
TDS calculated	X	X	X
Chlorophyll a	X	X	X
Alkalinity	X		
Pheophytin a	X	X	X
Bacteria			
E. coli	X	X	X
E. coli holding time	X	X	X
Enterococcus	X		
24 hr Dissolved Oxygen	X	X	X
Metals in Sediment			X
Organics in Sediment			X
Drought codes	X	X	

A6 Project/Task Description

The Lower Colorado River Authority will collect water samples from the Colorado River below O.H. Ivie Reservoir to its mouth, as well as all the major tributaries and reservoirs. Parameters collected will include field, flow, bacteria, 24 hr dissolved oxygen and conventionals. A total of 59 sites will be routinely monitored. Sampling frequency at 49 locations will be six times per year, in order to maintain a consistent data set, to determine inter-seasonal variability and examine possible pollution impacts. Quarterly monitoring will occur at six locations. These locations are mostly rural and have few sources of large impacts on water quality. One location will be monitored semiannually and has little chance of developing water quality concerns. 24-hr dissolved oxygen will be collected at one site five times per fiscal year

The Upper Colorado River Authority will collect water samples at sites in the Concho River and upper Colorado River watersheds, including tributaries and reservoirs. UCRA's monitoring program will include collection of field, *E. coli*, flow, and conventional parameters. Diel data will be collected at three sites in Segment 1421 which have significant dissolved oxygen issues caused by urban runoff and lack of base flows. Nutrients, chlorophyll *a* and *E. coli* will be collected quarterly at 33 sites throughout the upper basin. Fourteen sites will be monitored twice per fiscal year. Bacteria will not be collected in segment 1412 due to the inability to meet the holding time for *Enterococcus* bacteria. UCRA sampling frequencies vary from quarterly to semiannually, based upon data needs and shared monitoring with the regional TCEQ offices.

City of Austin, an in-kind contributor of CRP data, will collect water samples at 17 routine sites in and around Austin. Field, conventional, flow, sediment and bacteria will be collected, analyzed and reported for Lady Bird and Walter E. Long lakes and several tributaries to the Colorado River. Field measurements are collected at all sites. Organics and metals in sediment will be collected from Lake Austin, Lady Bird Lake and Barton SpringNutrients and bacteria will be collected at select sites. Chlorophyll a will be collected from select sites in Lady Bird Lake and in Lake Walter E. Long. Overall, sampling frequencies vary from once per year to biweekly based on parameter, sites and internal uses for the data.

A summary of monitoring groups and frequencies is located below.

		Number of Sites					
Frequency	Field	Conventionals	Bacteria	Flow	24-hr DO	Metal Sed	Organic Sed
COA							
1	5	5	5	5	1	2	2
2	1	-	1	1	1	-	-
3	4	4	4	2	1	-	-
4	6	6	6	6	1	-	-
9	1	1	1	1	1	-	-
LCRA							
2	1	1	1	1	1	-	-
4	6	6	6	5	1	-	-
5	1	-	1	1	1	-	-
6	48	45	47	29	1	-	-
8	2	2	2		1	-	-
UCRA							
2	14	14	14	3	3	-	-
4	32	32	19	32	-	-	-

See Appendix B for the project-related work plan tasks and schedule of deliverables for a description of work defined in this QAPP.

See Appendix B for sampling design and monitoring pertaining to this OAPP.

Amendments to the OAPP

Revisions to the QAPP may be necessary to address incorrectly documented information or to reflect changes in project organization, tasks, schedules, objectives, and methods. Requests for amendments will be directed from the LCRA Project Manager to the CRP Project Manager electronically. The Basin Planning Agency will submit a completed QAPP Amendment document, including a justification of the amendment, a table of changes, and all pages, sections, and attachments affected by the amendment. Amendments are effective immediately upon approval by the LCRA Project Manager, the LCRA OAO, the CRP Project Manager, the CRP Lead OA Specialist, the CRP Project QA Specialist, and additional parties affected by the amendment. Amendments are not retroactive. No work shall be implemented without an approved QAPP or amendment prior to the start of work. Any activities under this contract that commence prior to the approval of the governing OA document constitute a deficiency and are subject to corrective action as described in section C1 of this QAPP. Any deviation or deficiency from this QAPP which occurs after the execution of this QAPP will be addressed through a Corrective Action Plan (CAP). An amendment may be a component of a CAP to prevent future recurrence of a deviation.

Amendments will be incorporated into the QAPP by way of attachment and distributed to personnel on the distribution list by the LCRA Project Manager. If adherence letters are required, the LCRA secure an adherence letter from each sub-tier project participant (e.g., subcontractors, sub-participant, or other units of government) affected by the amendment stating the organization's awareness of and commitment to requirements contained in each amendment to the QAPP. The Basin Planning Agency will maintain this documentation as part of the project's OA records, and ensure that the documentation is available for review.

Special Project Appendices

Projects requiring QAPP appendices will be planned in consultation with the LCRA and the TCEQ Project Manager and TCEQ technical staff. Appendices will be written in an abbreviated format and will reference the Basin OAPP where appropriate. Appendices will be approved by the LCRA Project Manager, the LCRA OAO, the Laboratory (as applicable), and the CRP Project Manager, the CRP Project OA Specialist, the CRP Lead OA Specialist and additional parties affected by the Appendix, as appropriate. Copies of approved OAPP appendices will be distributed by the LCRA to project participants before data collection activities commence. LCRA will secure written documentation from each sub-tier project participant (e.g., subcontractors, subparticipants, other Lower Colorado River Authority OAPP Page 17

units of government) stating the organization's awareness of and commitment to requirements contained in each special project appendix to the QAPP. The LCRA will maintain this documentation as part of the project's QA records, and ensure that the documentation is available for review.

A7 Quality Objectives and Criteria

The purpose of routine water quality monitoring is to collect surface water quality data that can be used to characterize water quality conditions, identify significant long-term water quality trends, support water quality standards development, support the permitting process, and conduct water quality assessments in accordance with TCEQ's <u>Guidance for Assessing and Reporting Surface Water Quality in Texas, June 2015</u> or most recent version (https://www.tceq.texas.gov/assets/public/waterquality/swqm/assess/14txir/2014_guidance.pdf). These water quality data, and data collected by other organizations (e.g., United States Geological Survey (USGS), TCEQ, etc.), will be subsequently reconciled for use and assessed by the TCEQ.

Systematic watershed monitoring is defined as sampling that is planned for a short duration (1 to 2 years), and is designed to screen waters that would not normally be included in the routine monitoring program, investigate areas of potential concern, and investigate possible sources of water quality impairments or concerns. Due to the limitations regarding these data (e.g., not temporally representative, limited number of samples, biological sampling does not meet the specimen vouchering requirements), the data will be used to determine whether any locations have values exceeding the TCEQ's water quality criteria and/or screening levels (or in some cases values elevated above normal). The LCRA will use this information to determine future monitoring priorities. These water quality data and data collected by other organizations (e.g., USGS, TCEQ, etc.), will be subsequently reconciled for use and assessed by the TCEQ.

The measurement performance specifications to support the project purpose for a minimum data set are specified in Appendix A.

Ambient Water Reporting Limits (AWRLs)

For surface water to be evaluated for compliance with Texas Surface Water Quality Standards ("TSWQS") and screening levels, data must be reported at or below specified reporting limits. To ensure data are collected at or below these reporting limits, required ambient water reporting limits ("AWRL") have been established. A full listing of AWRLs can be found at

https://www.tceq.texas.gov/assets/public/waterquality/crp/QA/awrlmaster.pdf.

The limit of quantitation (LOQ) is the minimum reporting limit, concentration, or quantity of a target variable (e.g., target analyte) that can be reported with a specified degree of confidence by the laboratory analyzing the sample. Analytical results shall be reported down to the laboratory's LOQ (i.e., the laboratory's LOQ for a given parameter is its reporting limit) as specified in Appendix A.

The following requirements must be met in order to report results to the CRP:

- The laboratory's LOO for each analyte must be set at or below the AWRL.
- Once the LOQ is established in the QAPP, that is the reporting limit for that parameter until such time as the laboratory amends the QAPP and lists an updated LOQ.
- The laboratory must demonstrate its ability to quantitate at its LOQ for each analyte by running an LOQ check sample for each analytical batch of CRP samples analyzed.
- When reporting data, no results may be reported below the LOQ stated in this QAPP.
- Measurement performance specifications for LOO check samples are found in Appendix A.

Laboratory Measurement Quality Control Requirements and Acceptability Criteria are provided in Section B5.

Precision

similar conditions, conform to themselves. It is a measure of agreement among replicate measurements of the same property, under prescribed similar conditions, and is an indication of random error.

Laboratory precision is assessed by comparing replicate analyses of Laboratory Control Samples (LCS) in the sample matrix (e.g. deionized water, sand, commercially available tissue), Matrix Spike/Matrix Spike Duplicate (MS/MSD), or sample/duplicate (DUP) pairs, as applicable. Precision results are compared against measurement performance specifications and used during evaluation of analytical performance. Program-defined measurement performance specifications for precision are defined in Appendix A.

Bias

Bias is the systematic or persistent distortion of a measurement process, which causes errors in one direction (i.e., the expected sample measurement is different from the sample's true value). Bias is a statistical measurement of correctness and includes multiple components of systematic error. Bias is determined through the analysis of LCS and LOQ check samples prepared with verified and known amounts of all target analytes in the sample matrix (e.g. deionized water, sand, commercially available tissue) and by calculating percent recovery. Results are compared against measurement performance specifications and used during evaluation of analytical performance. Program-defined measurement performance specifications for bias are specified in Appendix A.

Representativeness

Site selection, the appropriate sampling regime, comparable monitoring and collection methods, and use of only approved analytical methods will assure that the measurement data represents the conditions at the site. Routine data collected under CRP are considered to be spatially and temporally representative of ambient water quality conditions. Water quality data are collected on a routine frequency and are separated by approximately even time intervals. At a minimum, samples are collected over at least two seasons (to include inter-seasonal variation) and over two years (to include inter-year variation) and include some data collected during an index period (March 15- October 15). Although data may be collected during varying regimes of weather and flow, the data sets will not be biased toward unusual conditions of flow, runoff, or season. The goal for meeting maximum representation of the water body will be tempered by funding availability.

Comparability

Confidence in the comparability of routine data sets for this project and for water quality assessments is based on the commitment of project staff to use only approved sampling and analysis methods and QA/QC protocols in accordance with quality system requirements as described in this QAPP and in TCEQ guidance. Comparability is also guaranteed by reporting data in standard units, by using accepted rules for rounding figures, and by reporting data in a standard format as specified in the Data Management Plan in Section B10.

Completeness

The completeness of the data describes how much of the data are available for use compared to the total potential data. Ideally, 100% of the data should be available. However, the possibility of unavailable data due to accidents, insufficient sample volume, broken or lost samples, etc. is to be expected. Therefore, it will be a general goal of the project(s) that 90% data completion is achieved.

A8 Special Training/Certification

Before new field personnel independently conduct field work, the ELS Field Team Services Leader trains him/her in proper instrument calibration, field sampling techniques, and field analysis procedures. A comprehensive examination must be passed before new field personnel must pass The QA officer (or designee) will document the successful field demonstration. The QA Officer (or designee) will retain documentation of training and the successful field demonstration in the employee's personnel file and ensure that the

documentation will be available during monitoring systems audits.

The requirements for Global Positioning System (GPS) certification are located in Section B10, Data Management.

Contractors and subcontractors must ensure that laboratories analyzing samples under this QAPP meet the requirements contained in The NELAC Institute (TNI) Standard (2016) Volume 1, Module 2, Section 4.5.5 (concerning Subcontracting of Environmental Tests).

A9 Documents and Records

The documents and records that describe, specify, report, or certify activities are listed. The list below is limited to documents and records that may be requested for review during a monitoring systems audit.

Table A9.1 Project Documents and Records

Document/Record	Location	Retention	Format
		(yrs)	
QAPPs, amendments and appendices	LCRA	5 years	Electronic
Field SOPs	LCRA	5 years	Electronic/Paper
Laboratory Quality Manuals	LCRA/ELS/DHL	5 years	Electronic
Laboratory SOPs	LCRA/ELS/DHL	5 years	Electronic
QAPP distribution documentation	LCRA	5 years	Electronic
Field staff training records	LCRA	5 years	Electronic
Field equipment calibration/maintenance	ELS/UCRA/COA	5 years	Electronic/Paper
logs			
Field instrument printouts	ELS	5 years	Electronic
Field notebooks or data sheets	LCRA/UCRA/COA	5 years	Electronic/Paper
Chain of custody records	LCRA/UCRA/COA/ELS	5 years	Electronic
Laboratory calibration records	ELS/DHL	5 years	Electronic
Laboratory instrument printouts	ELS/DHL	5 years	Electronic
Laboratory data reports/results	LCRA/ELS/DHL	5 years	Electronic
Laboratory equipment maintenance logs	ELS/DHL	5 years	Electronic
Corrective Action Documentation	LCRA/UCRA/COAELS/DHL	5 years	Electronic

Laboratory Test Reports

Test/data reports from the laboratory must document the test results clearly and accurately. Routine data reports should be consistent with the TNI Standard (2016), Volume 1, Module 2, Section 5.10 and include the information necessary for the interpretation and validation of data. The requirements for reporting data and the procedures are provided.

Laboratory Test Reports generated by ELS and DHL contain the following elements:

- · Sample results
- Units of measurement
- Sample matrix
- Dry weight or wet weight (as applicable)
- Station information
- Date and time of collection
- Sample depth (as applicable)
- E. coli analysis time so that holding time can be calculated and reported to TCEQ
- LOQ and limit of detection (LOD) (formerly referred to as the reporting limit and the method detection limit, respectively) and qualification of results outside the working range (if applicable). LCRA receives data down to the LOD but censors data to the LOQ for reporting to CRP. The Reporting Limit may also be used and will be defined as LOQ or LOD by DHL Analytical for sediment moisture corrections.
- Certification of NELAP compliance.

Electronic Data

Data will be submitted electronically to the TCEQ in the Event/Result file format described in the most current version of the DMRG, which can be found at https://www.tceq.texas.gov/waterquality/data-management/dmrg_index.html. A completed Data Review Checklist and Data Summary (see Appendix F) will be submitted with each data submittal.

ELS will provide data electronically through the use of Microsoft Excel spreadsheets and portable format documents. UCRA will provide data electronically to Lower Colorado River Authority through the use of Excel spreadsheets. The COA will provide data in a text files format similar to the result/event file format. Lower Colorado River Authority will submit all acceptable, Lower Colorado River Authority and sub-participant data, Data Review Checklists and Data Summary Reports to TCEQ.

B1 Sampling Process Design

See Appendix B for sampling process design information and monitoring tables associated with data collected under this QAPP.

B2 Sampling Methods

Field Sampling Procedures

Field sampling will be conducted in accordance with the latest versions of the TCEQ Surface Water Quality Monitoring Procedures Volume 1: Physical and Chemical Monitoring Methods for Water, Sediment, and Tissue, 2012 (RG-415) and Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data, 2014 (RG-416), collectively referred to as "SWQM Procedures." Updates to SWQM Procedures are posted to the Surface Water Quality Monitoring Procedures website

(https://www.tceq.texas.gov/waterquality/monitoring/swqm_guides.html), and shall be incorporated into the LCRA's procedures, QAPP, SOPs, etc., within 60 days of any final published update. Additional aspects outlined in Section B below reflect specific requirements for sampling under CRP and/or provide additional clarification.

Table B2.1 Sample Storage, Preservation and Handling Requirements

Parameter	Matrix	Container	Preservation	Sample Volume	Holding Time
TSS	Water	Polyethylene/Polypropylene or Glass	Ice, <6 °C not frozen	1000 mL	7 days
Sulfate	Water	Polyethylene/Polypropylene or Glass	Ice, <6 °C not frozen	250 mL	28 days
Chloride	Water	Polyethylene/Polypropylene or Glass	Ice, <6 °C not frozen	100 mL	28 days
Ammonia-N	Water	Polyethylene/Polypropylene or Glass	Ice, <6 °C not frozen, H2SO4, pH<2	250 mL	28 days
Kjeldahl-N	Water	Polyethylene/Polypropylene or Glass	Ice, <6 °C not frozen, H2SO4, pH<2	500	28 days
Nitrate + Nitrite- N	Water	Polyethylene/Polypropylene or Glass	Ice, <6 °C not frozen, H2SO4, pH<2	250	28 days
Phosphorus, total	Water	Polyethylene/Polypropylene or Glass	Ice, <6 °C not frozen, H2SO4, pH<2	100	28 days
Orthophosphate	Water	Polyethylene/Polypropylene or Glass	Ice, <6 °C not frozen	250	48 hours
Chlorophyll-a	Water	AmberPolyethylene/Polypropyl ene or Glass	Dark, ice before filtration.	250	48 hours, 24 days after filtration if frozen
Pheophytin-a	Amber Water Polyethylene/Polypropylene or Glass		Dark, ice before filtration.	500	48 hours, 24 days after filtration if

					frozen
E. coli*	Water	Sterile, Polyethylene	Sodium thiosulfate Ice, <6 °C not frozen	125	8 hours*
Enterococci	Water	Sterile, Polyethylene	Sodium thiosulfate Ice, <6 °C not frozen	125	8 hours
Alkalinity, total	Water	Polyethylene/Polypropylene or Glass	Ice, <6 °C not frozen	200	14 days
Metals in sediment	Sediment	Glass	Ice, <6 °C not frozen	1000 **	6 months
Organics/ Pesticides/ Conventionals	Sediment	Glass	Ice, <6 °C not frozen	1000 **	14 days after extraction
Mercury	Mercury Sediment Glass		Ice, <6 °C not frozen	1000 **	28 days
Chlorophyll-a Pheophytin-a Water Polyethylene/Polypropylene or Glass		Dark, ice before filtration.	250	48 hours, 24 days after filtration	

^{*}E. coli samples should always be processed as soon as possible and incubated no later than 8 hours from time of collection. When transport conditions necessitate sample incubation after 8 hours from time of collection, the holding time may be extended and samples must be processed as soon as possible and within 30 hours.

Sample Containers

Certificates from sample container manufacturers are maintained by ELS and DHL. ELS supplies LCRA and UCRA with new, pre-cleaned containers for water quality monitoring. DHL and ELS provide sample containers to COA for sediment sample collection. Sample containers are not reused but are properly disposed of after use. Sample containers used for conventional parameters are purchased pre-cleaned and are disposable.

- Bacteriological sample containers are the 120 and 290 mL bottles from IDEXX and contain 1% sodium thiosulfate to neutralize residual chlorine up to 15 mg/l.
- Brown polyethylene bottles are used for chlorophyll *a* sampling.
- Sample containers for metals are new, certified glass or plastic bottles, or glass or plastic bottles cleaned and documented according to EPA method 1669.
- Sample containers for organics are purchased pre-cleaned and certified for organic constituents. ELS and DHL maintain certificates of analysis for organic and metals for sample containers.
- Sample containers may contain preservatives added by laboratory staff prior to sample collection.

Processes to Prevent Contamination

SWQM Procedures outline the necessary steps to prevent contamination of samples, including: direct collection into sample containers, when possible; use of certified containers for organics; and clean sampling techniques for metals. Field QC samples (identified in Section B₅) are collected to verify that contamination has not occurred.

Documentation of Field Sampling Activities

Field sampling activities for LCRA and COA are documented on electronic field data forms and UCRA uses a field sheet template for flow measurements and a waterproof field book for recording field notes and secchi depths (see Appendix D for a copy of these forms/templates). Flow worksheets, aquatic life use monitoring checklists, habitat assessment forms, field biological assessment forms, and records of bacteriological analyses

(if applicable) are part of the field data record. The following will be recorded for all visits:

Station ID
Sampling Date
Location
Sampling Depth
Sampling Time
Sample Collector's name
Values for all field parameters collected.

Notes containing detailed observational data not captured by field parameters, including:

Water appearance,

Weather,

Biological activity,

Unusual odors,

Pertinent observations related to water quality or stream uses,

Watershed or instream activities,

Specific sample information,

Missing parameters.

Recording Data

For the purposes of this section and subsequent sections, all field and laboratory personnel follow the basic rules for recording information as documented below:

- Write legibly, in indelible ink
- Make changes by crossing out original entries with a single line strike-out, entering the changes, and initialing and dating the corrections.
- Close-out incomplete pages with an initialed and dated diagonal line.

Sampling Method Requirements or Sampling Process Design Deficiencies, and Corrective Action

Examples of sampling method requirements or sample design deficiencies include but are not limited to such things as inadequate sample volume due to spillage or container leaks, failure to preserve samples appropriately, contamination of a sample bottle during collection, storage temperature and holding time exceedance, sampling at the wrong site, etc. Any deviations from the QAPP, SWQM Procedures, or appropriate sampling procedures may invalidate data, and require documented corrective action. Corrective action may include for samples to be discarded and re-collected. It is the responsibility of the LCRA Project Manager, in consultation with the LCRA QAO, to ensure that the actions and resolutions to the problems are documented and that records are maintained in accordance with this QAPP. In addition, these actions and resolutions will be conveyed to the CRP Project Manager both verbally and in writing in the project progress reports and by completion of a CAP.

The definition of and process for handling deficiencies and corrective action are defined in Section C1.

B3 Sample Handling and Custody

Sample Tracking

Proper sample handling and custody procedures ensure the custody and integrity of samples beginning at the time of sampling and continuing through transport, sample receipt, preparation, and analysis.

A sample is in custody if it is in actual physical possession or in a secured area that is restricted to authorized personnel. The Chain of Custody (COC) form is a record that documents the possession of the samples from the time of collection to receipt in the laboratory. The following information concerning the sample is recorded on the COC form (See Appendix E). The following list of items matches the COC form in Appendix E.

Date and time of collection
Site identification
Sample matrix
Number of containers
Preservative used
Temperature on arrival at laboratory
Was the sample filtered?
Analyses required
Name of collector
Custody transfer signatures and dates and time of transfer Bill of lading, if applicable.

Sample Labeling

Samples from the field are labeled on the container, or on a label, with an indelible marker. Label information includes:

Site identification
Date and time of collection
Preservative added, if applicable
Indication of field-filtration for metals, as applicable
Sample type (i.e., analyses) to be performed.

Sample Handling

Sample Tracking Procedure Deficiencies and Corrective Action

All deficiencies associated with COC procedures, as described in this QAPP, are immediately reported to the LCRA Project Manager. These include such items as delays in transfer resulting in holding time violations; violations of sample preservation requirements; incomplete documentation, including signatures; possible tampering of samples; broken or spilled samples, etc. The LCRA Project Manager in consultation with the LCRA QAO will determine if the procedural violation may have compromised the validity of the resulting data. Any failures that have reasonable potential to compromise data validity will invalidate data and the sampling event should be repeated. The resolution of the situation will be reported to the TCEQ CRP Project Manager in the project progress report. CAPs will be prepared by the LCRA QAO and submitted to TCEQ CRP Project Manager along with project progress report.

The definition of and process for handling deficiencies and corrective action are defined in Section C1.

B4 Analytical Methods

The analytical methods, associated matrices, and performing laboratories are listed in Appendix A. The authority for analysis methodologies under CRP is derived from the 30 Tex. Admin. Code Ch. 307, in that data generally are generated for comparison to those standards and/or criteria. The Texas Surface Water Quality Standards state "Procedures for laboratory analysis must be in accordance with the most recently published edition of the book entitled Standard Methods for the Examination of Water and Wastewater, the TCEQ Surface Water Quality Monitoring Procedures as amended, 40 CFR 136, or other reliable procedures acceptable to the TCEQ, and in accordance with chapter 25 of this title."

Laboratories collecting data under this QAPP must be NELAP accredited in accordance with 30 TAC Chapter 25. Copies of laboratory QMs and SOPs shall be made available for review by the TCEQ.

Standards Traceability

All standards used in the field and laboratory are traceable to certified reference materials. Standards preparation is fully documented and maintained. Each documentation includes information concerning the standard identification, starting materials, including concentration, amount used and lot number; date prepared, expiration date and preparer's initials/signature. The reagent bottle is labeled in a way that will trace

the reagent back to preparation.

Analytical Method Deficiencies and Corrective Actions

Deficiencies in field and laboratory measurement systems involve, but are not limited to such things as instrument malfunctions, failures in calibration, blank contamination, quality control samples outside QAPP-defined limits, etc. In many cases, the field technician or lab analyst will be able to correct the problem. If the problem is resolvable by the field technician or lab analyst, then they will document the problem on the field data sheet or laboratory record and complete the analysis. If the problem is not resolvable, then it is conveyed to the applicable Laboratory Supervisor, who will make the determination and notify the LCRA QAO if the problem compromises sample results. If the analytical system failure may compromise the sample results, the resulting data will not be reported to the TCEQ. The nature and disposition of the problem is reported on the data report which is sent to the LCRA Project Manager will include this information in a CAP and submit with the Progress Report which is sent to the TCEQ CRP Project Manager.

The definition of and process for handling deficiencies and corrective action are defined in Section C1.

The TCEQ has determined that analyses associated with qualifier codes (e.g., "holding time exceedance," "sample received unpreserved," "estimated value") may have unacceptable measurement uncertainty associated with them. This will immediately disqualify analyses from submittal to SWQMIS. Therefore, data with these types of problems should not be reported to the TCEQ. Additionally, any data collected or analyzed by means other than those stated in the QAPP, or data suspect for any reason should not be submitted for loading and storage in SWQMIS. However, when data is lost, its absence will be described in the data summary report submitted with the corresponding data set, and a CAP (as described in section C1) may be necessary.

B5 Quality Control

Sampling Quality Control Requirements and Acceptability Criteria

No field QC samples will be collected in this QAPP

Laboratory Measurement Quality Control Requirements and Acceptability Criteria

Batch

A batch is defined as environmental samples that are prepared and/or analyzed together with the same process and personnel, using the same lot(s) of reagents. A preparation batch is composed of one to 20 environmental samples of the same NELAP-defined matrix, meeting the above-mentioned criteria and with a maximum time between the start of processing of the first and last sample in the batch to be 24 hours. An analytical batch is composed of prepared environmental samples (extract, digestates, or concentrates) which are analyzed together as a group. An analytical batch can include prepared samples originating from various environmental matrices and can exceed 20 samples.

Method Specific QC requirements

QC samples, other than those specified later this section (e.g., sample duplicates, surrogates, internal standards, continuing calibration samples, interference check samples, positive control, negative control, and media blank), are run as specified in the methods and in SWQM Procedures. The requirements for these samples, their acceptance criteria or instructions for establishing criteria, and corrective actions are method-specific.

Detailed laboratory QC requirements and corrective action procedures are contained within the individual laboratory quality manuals (QMs). The minimum requirements that all participants abide by are stated below.

Comparison Counting

For routine bacteriological samples, repeat counts on one or more positive samples are required, at least monthly. If possible, the analyst will compare counts with another analyst who also performs the analysis. Replicate counts by the same analyst should agree within 5 percent, and those between analysts should agree

within 10 percent. The analyst(s) will record the results.

Limit of Quantitation (LOQ)

The laboratory will analyze a calibration standard (if applicable) at the LOQ published in Appendix A of this QAPP on each day calibrations are performed. In addition, an LOQ check sample will be analyzed with each analytical batch. Calibrations including the standard at the LOQ listed in Appendix A will meet the calibration requirements of the analytical method, or corrective action will be implemented.

LOQ Sediment and Tissue Samples – When considering LOQs for solid samples and how they apply to results, two aspects of the analysis are considered: (1) the LOQ of the sample, based on the real world in which moisture content and interferences affect the result, and (2) the LOQ in the QAPP, which is a value less than or equal to the AWRL based on an idealized sample with zero % moisture.

The LOQ for a solid sample is based on the lowest non-zero calibration standard (as are those for water samples), the moisture content of the solid sample, and any sample concentration or dilution factors resulting from sample preparation or clean-up.

To establish solid-phase LOQs to be listed in Appendix A of the QAPP, the laboratory will adjust the concentration of the lowest non-zero calibration standard for the amount of sample extracted, the final extract volume, and moisture content (assumed to be zero % moisture). Each calculated LOQ will be less than or equal to the AWRL on the dry-weight basis to satisfy the AWRL requirement for sediment and tissue analyses. When data are reviewed for consistency with the QAPP, they are evaluated based on this requirement. Results may not appear to meet the AWRL requirement due to high moisture content, high concentrations of non-target analytes necessitating sample dilution, etc. These sample results will be submitted to the TCEQ with an explanation on the data summary as to why results do not appear to meet the AWRL requirement.

LOQ Check Sample

An LOQ check sample consists of a sample matrix (e.g., deionized water, sand, commercially available tissue) free from the analytes of interest spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is used to establish intra-laboratory bias to assess the performance of the measurement system at the lower limits of analysis. The LOQ check sample is spiked into the sample matrix at a level less than or equal to the LOQ published in Appendix A of this QAPP, for each analyte for each analytical batch of CRP samples run. If it is determined that samples have exceeded the high range of the calibration curve, samples should be diluted or run on another curve. For diluted or high concentration samples run on batches with calibration curves that do not include the LOQ published in Appendix A of this QAPP, a check sample will be run at the low end of the calibration curve.

The LOQ check sample is carried through the complete preparation and analytical process and is performed at a rate of one per analytical batch.

The percent recovery of the LOQ check sample is calculated using the following equation in which R is percent recovery, R is the sample result, and R is the reference concentration for the check sample:

$$\%R = \frac{S_R}{S_A} \times 100$$

Measurement performance specifications are used to determine the acceptability of LOQ Check Sample analyses as specified in Appendix A of this QAPP.

Laboratory Control Sample (LCS)

An LCS consists of a sample matrix (e.g., deionized water, sand, commercially available tissue) free from the analytes of interest spiked with verified known amounts of analytes or a material containing known and verified amounts of analytes. It is used to establish intra-laboratory bias to assess the performance of the measurement system. The LCS is spiked into the sample matrix at a level less than or near the midpoint of the calibration for each analyte. In cases of test methods with very long lists of analytes, LCSs are prepared with all the target analytes and not just a representative number, except in cases of organic analytes with multipeak responses.

The LCS is carried through the complete preparation and analytical process and is performed at a rate of one per

preparation batch.

Results of LCSs are calculated by percent recovery (%R), which is defined as 100 times the measured concentration, divided by the true concentration of the spiked sample.

The following formula is used to calculate percent recovery, where R is percent recovery; R is the measured result; and R is the true result:

$$\%R = \frac{S_R}{S_A} \times 100$$

Measurement performance specifications are used to determine the acceptability of LCS analyses as specified in Appendix A.

Laboratory Duplicates

A laboratory duplicate is an aliquot taken from the same container as an original sample under laboratory conditions and processed and analyzed independently. A laboratory duplicate is achieved by preparing 2 separate aliquots of a sample, LCS, or matrix spike. Both samples are carried through the entire preparation and analytical process. Laboratory duplicates are used to assess precision and are performed at a rate of one per preparation batch.

For most parameters except bacteria, precision is evaluated using the relative percent difference (RPD) between duplicate results as defined by 100 times the difference (range) of each duplicate set, divided by the average value (mean) of the set. For duplicate results, X_1 and X_2 , the RPD is calculated from the following equation:

$$RPD = \frac{|X_1 - X_2|}{\left(\frac{X_1 + X_2}{2}\right)} \times 100$$

If the precision criterion is exceeded, the data are not acceptable for use under this project and are not reported to TCEQ. Results from all samples associated with that failed duplicate (usually a maximum of 10 samples) are considered to have excessive analytical variability and are qualified as not meeting project QC requirements.

For bacteriological parameters, precision is evaluated using the results from laboratory duplicates. Bacteriological duplicates are analyzed at a 10% frequency (or once per preparation batch, whichever is more frequent). Sufficient volume should be collected to analyze laboratory duplicates from the same sample container.

The base-10 logarithms of the results from the original sample and its duplicate are calculated. The absolute value of the difference between the two base-10 logarithms is calculated and compared to the precision criterion in Appendix A.

The precision criterion in Appendix A for bacteriological duplicates applies only to samples with concentrations > 10 MPN.

Laboratory equipment blank

Laboratory equipment blanks are prepared at the laboratory where collection materials for metals sampling equipment are cleaned between uses. These blanks document that the materials provided by the laboratory are free of contamination. The QC check is performed before the metals sampling equipment is sent to the field. The analysis of laboratory equipment blanks should yield values less than the LOQ. If the result is not less than the LOQ, the equipment should not be used.

Matrix spike (MS) – Matrix spikes are prepared by adding a known quantity of target analyte to a specified amount of matrix sample for which an independent estimate of target analyte concentration is available.

Matrix spikes indicate the effect of the sample on the precision and accuracy of the results generated using the selected method. Matrix-specific QC samples indicate the effect of the sample matrix on the precision and accuracy of the results generated using the selected method. The information from these controls is Lower Colorado River Authority QAPP

Page 29

sample/matrix specific and would not normally be used to determine the validity of the entire batch. The frequency of matrix spikes is specified by the analytical method, or a minimum of one per preparation batch, whichever is greater. To the extent possible, matrix spikes prepared and analyzed over the course of the project should be performed on samples from different sites.

The components to be spiked shall be as specified by the mandated analytical method. The results from matrix spikes are primarily designed to assess the validity of analytical results in a given matrix and are expressed as percent recovery (%R).

The percent recovery of the matrix spike is calculated using the following equation, where R is percent recovery, S_{SR} is the concentration measured in the matrix spike, S_R is the concentration in the parent sample, and S_A is the concentration of analyte that was added:

$$\%R = \frac{S_{SR} - S_R}{S_A} \times 100$$

Matrix spike recoveries are compared to the same acceptance criteria established for the associated LCS recoveries, rather than the matrix spike recoveries published in the mandated test method. The EPA 1993 methods (i.e. ammonia-nitrogen, ion chromatography, TKN) that establish matrix spike recovery acceptance criteria are based on recoveries from drinking water that has very low interferences and variability and do not represent the matrices sampled in the CRP. If the matrix spike results are outside laboratory-established criteria, there will be a review of all other associated quality control data in that batch. If all of quality control data in the associated batch passes, it will be the decision of the laboratory QAO or LCRA Project Manager to report the data for the analyte that failed in the parent sample to TCEQ or to determine that the result from the parent sample associated with that failed matrix spike is considered to have excessive analytical variability and does not meet project QC requirements. Depending on the similarities in composition of the samples in the batch, LCRA may consider excluding all of the results in the batch related to the analyte that failed recovery.

Method blank

A method blank is a sample of matrix similar to the batch of associated samples (when available) that is free from the analytes of interest and is processed simultaneously with and under the same conditions as the samples through all steps of the analytical procedures, and in which no target analytes or interferences are present at concentrations that impact the analytical results for sample analyses. The method blank is used to document contamination from the analytical process. The analysis of method blanks should yield values less than the LOQ. For very high-level analyses, the blank value should be less than 5% of the lowest value of the batch, or corrective action will be implemented. Samples associated with a contaminated blank shall be evaluated as to the best corrective action for the samples (e.g. reprocessing, data qualifying codes). In all cases the corrective action must be documented.

The method blank shall be analyzed at a minimum of one per preparation batch. In those instances for which no separate preparation method is used (e.g., VOA) the batch shall be defined as environmental samples that are analyzed together with the same method and personnel, using the same lots of reagents, not to exceed the analysis of 20 environmental samples.

Quality Control or Acceptability Requirements Deficiencies and Corrective Actions

Sampling QC excursions are evaluated by the LCRA Project Manager, in consultation with the LCRA QAO. In that differences in sample results are used to assess the entire sampling process, including environmental variability, the arbitrary rejection of results based on pre-determined limits is not practical. Therefore, the professional judgment of the LCRA Project Manager and QAO will be relied upon in evaluating results. Field blanks for trace elements and trace organics are scrutinized very closely. Field blank values exceeding the acceptability criteria will automatically invalidate the sample. Notations of blank contamination are noted in the data summaries that accompany data deliverables. Equipment blanks for metals analysis are also scrutinized very closely.

Laboratory measurement quality control failures are evaluated by the laboratory staff. The disposition of such failures and the nature and disposition of the failure is reported to the Laboratory QAO. The Laboratory QAO

will discuss the failure with the LCRA Project Manager. If applicable, the LCRA Project Manager will include this information in a CAP and submit with the Progress Report which is sent to the TCEQ CRP Project Manager.

The definition of and process for handling deficiencies and corrective action are defined in Section C1.

Additionally, in accordance with CRP requirements and the TNI Standard (Volume 1, Module 2, Section 4.5, Subcontracting of Environmental Tests) when a laboratory that is a signatory of this QAPP finds it necessary and/or advantageous to subcontract analyses, the laboratory that is the signatory on this QAPP must ensure that the subcontracting laboratory is NELAP-accredited (when required) and understands and follows the QA/QC requirements included in this QAPP. This includes that the subcontracting laboratory utilize the same reporting limits as the signatory laboratory and performs all required quality control analysis outlined in this QAPP. The signatory laboratory is also responsible for quality assurance of the data prior to delivering it to the LCRA, including review of all applicable QC samples related to CRP data. As stated in section 4.5.5 of the 2016 TNI Standard, the laboratory performing the subcontracted work shall be indicated in the final report and the signatory laboratory shall make a copy of the subcontractor's report available to the client (LCRA) when requested.

B6 Instrument/Equipment Testing, Inspection, and Maintenance

All sampling equipment testing and maintenance requirements are detailed in the SWQM Procedures. Sampling equipment is inspected and tested upon receipt and is assured appropriate for use. Equipment records are kept on all field equipment and a supply of critical spare parts is maintained.

All laboratory tools, gauges, instrument, and equipment testing and maintenance requirements are contained within laboratory QM(s).

B7 Instrument Calibration and Frequency

Field equipment calibration requirements are contained in the SWQM Procedures. Post-calibration check error limits and the disposition resulting from errors are adhered to. Data collected from field instruments that do not meet the post-calibration check error limits specified in the SWQM Procedures will not be submitted for inclusion into SWQMIS.

Detailed laboratory calibrations are contained within the QM(s).

B8 Inspection/Acceptance of Supplies and Consumables

No special requirements for acceptance are specified for field sampling supplies and consumables. Supplies and consumables are inspected upon delivery, date received is recorded on the supplies and consumables containers. Certification and traceability documentation are recorded in the LIMS system.

B9 Acquired Data

This QAPP does not include the use of routine data acquired from external sources. Only data collected directly under this QAPP is submitted to the SWQMIS database.

Non-directly measured data, secondary data, or acquired data involves the use of data collected under another project and collected with a different intended use than this project. The acquired data still meets the quality requirements of this project and is defined below. The following data source(s) will be used for this project:

USGS gage station data will be used throughout this project to aid in determining gage height and flow. Rigorous QA checks are completed on gage data by the USGS and the data are approved by the USGS and permanently Lower Colorado River Authority QAPP

Page 31
LCRAFY2223CRPQAPP_Final.docx

stored at the USGS. This data will be submitted to the TCEQ under parameter code 00061 Flow, Instantaneous or parameter code 74069 Flow Estimate depending on the proximity of the monitoring station to the USGS gage station.

Reservoir stage data are collected every day from the USGS, International Boundary and Water Commission (IBWC), and the United States Army Corps of Engineers (USACE) websites. These data are preliminary and subject to revision. The Texas Water Development Board (TWDB) derives reservoir storage (in acre-feet) from these stage data (elevation in feet above mean sea level), by using the latest rating curve datasets available. These data are published at the TWDB website at http://waterdatafortexas.org/reservoirs/statewide. Information about measurement methodology can be found on the TWDB website. These data will be submitted to the TCEQ under parameter code 00052 Reservoir Stage and parameter code 00053 Reservoir Percent Full.

For UCRA monitoring, either the National Weather Service in San Angelo or Texas Tech University's West Texas Mesonet is used to obtain antecedent rainfall data. The Mesonet site can be found at http://www.mesonet.ttu.edu/.

The City of Austin obtains antecedent rainfall data from the City's flood early warning system. The system has rain gauges in all of the watersheds which COA monitors. COA can also report up to 75 days since significant precipitation. The City's flood warning system can be found at http://www.austintexas.gov/department/flood-early-warning-system

The Lower Colorado River Authority obtains antecedent rainfall for its extensive network of precipitation gages throughout the basin. Data is accessible at http://hydromet.lcra.org.

B10 Data Management

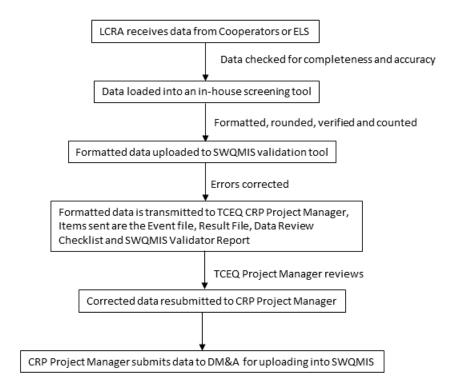
Data Management Process

Field water quality data are generated by field staff and submitted to LCRA as described below. ELS field data are provided to the LCRA DM as spreadsheets. UCRA field data are entered into spreadsheets by UCRA staff that are submitted to Lower Colorado River Authority. COA field data are submitted to Lower Colorado River Authority in the format specified by DMRG. Field data collected for LCRA sent via spreadsheets are converted into the form specified in the DMRG by the LCRA DM.

Laboratory data are generated at the bench by the ELS or DHL. The data are quality assured by the laboratory quality assurance manager, or in their absence, by senior staff designee.

The QA of the ELS-produced data is the ultimate responsibility of the ELS QAO and ELS Project Manager. The laboratory data are transmitted or made available in an electronic format to the LCRA, UCRA or COA QAO. Hard copies of the data are provided to agencies upon request.

UCRA's QAO and DM staff members combine the field and lab data, checks the data for completeness, verifies and validates the data then transmits the data to the Lower Colorado River Authority DM.


Data generated by DHL is sent to COA for review and is checked for completeness, verification and validation. The COA QAO combines field and lab data and transmits it to the Lower Colorado River Authority DM annually.

The LCRA DM performs automated checks of the data using in-house screening tools and adds unique tag identification numbers to the data. The data is then run through the SWQMIS validation tool to ensure correct formatting. The data are bundled and transmitted to the TCEQ Project Manager along with a Data Summary Report and Validator Report. Data obtained under different QAPPs or amendments are submitted separately to ensure compliance with the QAPP.

The TCEQ project manager reviews the data and associated reports and provides comments or asks for clarification. Upon approval of the data, the TCEQ project manager notifies the TCEQ data manager who

transfers the data to SWQMIS. The data is also stored on a SQL server database at the Lower Colorado River Authority.

The flow chart in Figure B10.1 summarizes the data handling and submittal process.

Data Dictionary

Terminology and field descriptions are included in the 2019 DMRG, or most recent version.

Name of Entity	Tag Prefix	Submitting Entity	Collecting Entity
COA	L	LC	AU
LCRA	L	LC	LC
UCRA	L	LC	UC

Data Errors and Loss

Automated and manual reviews of the data are performed prior to submittal. Examples of checks that are used to review for data errors or data loss include:

- Issues identified in the laboratory's QA Summary (Lab QC).
- Review of field data.
- Data reasonableness.
- Chain of custody.
- Sample preservation.

- Sites and parameter codes are contained in the QAPP.
- Which codes are not reported.
- Which data were not reported and reason for not reporting.
- All sites have a valid five-digit identity.
- Were all sites accessible.
- Transcription or input error by evaluating minimum/maximum values.
- Relationships among analytes (example: TKN > NH3-N).
- Counts of reported analytes (example: pH = specific conductance = D.O. = temperature).
- Significant figures.
- Check laboratory data for dilution factors.
- Less than detection values are reported as < LOQ.
- Values are within LOOs.
- Check for outliers by comparing to applicable TCEQ minimum/maximum values.
- Verified outliers are flagged as verified.
- Use of correct reporting units.
- Flows have a flow method associated with the data.
- If flow severity = 1 then flow = 0.
- If flow severity = 6 then no value is reported for flow.
- All streams have a flow associated.
- If a sample was collected, Days Since Significant Precipitation is included with the data.
- Depth of surface sample.
- In profile data, bottom sample should be \geq 0.3 meters from total measured depth.
- Sediment data has associated sediment texture codes.
- Majority of diel data collected during index or critical period.
- Diel data has relevant summary codes.
- Diel data collected when flow was greater than 7Q2.
- Duplicate records are not reported.
- No results for future sampling dates are reported.
- Correct number of fields in the Event (14) and Result (9) files.
- Sample time should have leading zeros.
- Date format MM/DD/YYYY
- E. coli data should have holding time reported with the data.
- E. coli data holding time should be less than 30 hours.
- The log of *E. coli* laboratory duplicate data are within 0.5, when applicable.
- Data collected and submitted under the appropriate QAPP or amendment.

Record Keeping and Data Storage

Agencies under this QAPP have records management policies in place which help ensure security and access to records. Records are secure and password protected.

ELS lab reports are stored on a SharePoint site for 5 years and in perpetuity in the LIMS system.

Once UCRA data is submitted to TCEQ, UCRA data is stored in files on UCRA computers with several forms of backup. Adobe PDF versions of UCRA data are kept on a backup computer and all UCRA files are backed up off-site on a nightly basis. Upon TCEQ approval of UCRA-submitted data, UCRA uploads the data onto their web site which is linked to LCRA's water quality website. Reported data is also available from TCEQ's SWQMIS.

LCRA data is stored on an enterprise managed Microsoft SQL Server 2016 database server cluster. The database cluster has daily differential backups with weekly full backups that includes copying offsite backup storage.

City of Austin water quality data is stored in an Oracle relational database known as the Water Resources Monitoring Database. Database backups are managed through server replication at separate secure datacenters. Data in the WRM is available to the public via a web query form at: https://data.austintexas.gov/Environmental/Water-Quality-Sampling-Data/5tye-7ray. Analytical data are uploaded from electronic data generated by the contract lab to the database and checked for completeness by the sampling project manager. Contract lab reports (including lab QC) are stored electronically on a file server that is backed up in real-time and retained with associated data in the WRM in perpetuity. COA lab QC documentation (calibration logs, etc) is maintained in hard copy logs at City offices for at least 12 years. Electronic data collection is performed using tablet pcs and a third-party cloud software with data loaded electronically into the WRM. Historic field data collection sheets are stored both electronically on the file server and paper copies are permanently filed on location at City offices or archived at off-site storage.

Water quality data produced by LCRA, UCRA and COA under this project can be obtained at http://waterquality.lcra.org. The GIS-based web page project allows internal or external users to access water quality data in a spatial format.

Data Handling, Hardware, and Software Requirements

Active Directory service accounts are used for web servers to connect and access the data for public retrieval. Standard SQL Server minimum builds include 24 GB of RAM, 2.8 GHz processor speed with 2 processors, multiple drives including 150 GB just for the operating system drive and expandable storage to scale with databases. Microsoft "Best Practice" development standards are followed to ensure future stability and compatibility.

Information Resource Management Requirements

The LCRA Digital Services Department (IT) requires the Enterprise Architecture team to review and adjust all hardware, software, and development standards annually. Information Technology Infrastructure Library (ITIL) processes are followed for change management procedures, approval, and tracking. Data will be managed in accordance with the TCEQ DMRG (most recent revision), and applicable Lower Colorado River Authority information resource management policies.

GPS equipment may be used as a component of the information required by the Station Location (SLOC) request process for creating the certified positional data that will ultimately be entered into SWQMIS database. Positional data obtained by CRP grantees using a GPS will follow the TCEQ's OPP 8.11 and 8.12 policy regarding the collection and management of positional data. Positional data may be acquired with a GPS and verified with photo interpolation using a certified source, such as Google Earth or Google Maps. The verified coordinates and map interface can then be used to develop a new SLOC.

Data will be managed in accordance with the TCEQ DMRG (most recent revision), and applicable Basin Planning Agency information resource management policies.

C1 Assessments and Response Actions

The following table presents the types of assessments and response actions for data collection activities applicable to the QAPP.

Table C1.1 Assessments and Response Requirements

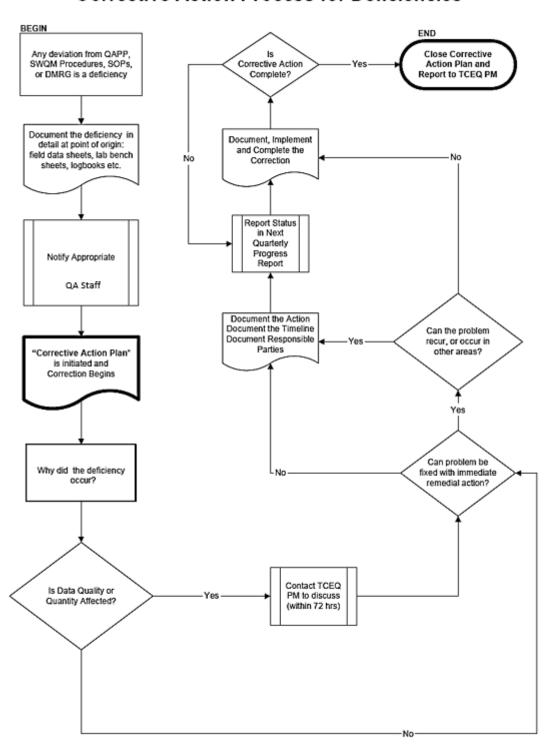
Assessment	Approximate	Responsible	Scope	Response
Activity	Schedule	Party		Requirements
Status Monitoring Oversight, etc.	Continuous	LCRA	Monitoring of the project status and records to ensure requirements are being fulfilled	Report to TCEQ in Quarterly Report
Monitoring Systems Audit of Basin Planning Agency	Dates to be determined by TCEQ CRP	TCEQ	Field sampling, handling and measurement; facility review; and data management as they relate to CRP	30 days to provide corrective actions response to the TCEQ

Monitoring	Once per	LCRA	Field sampling, handling	30 days to respond in
Systems Audit	biennium		and measurement; facility	writing to the LCRA.
of Program			review; and data	LCRA will report
Subparticipants			management as they relate	problems to TCEQ in
			to CRP	Progress Report.
Laboratory	Dates to be	TCEQ	Analytical and quality	30 days to provide
Assessment	determined by	Laboratory	control procedures	corrective actions
	TCEQ	Assessor	employed at the laboratory	response to the
			and the contract laboratory	TCEQ

Corrective Action Process for Deficiencies

Deficiencies are any deviation from the QAPP, SWQM Procedures, or other applicable guidance. Deficiencies may invalidate resulting data and require corrective action. Repeated deficiencies should initiate a CAP. Corrective action for deficiencies may include for samples to be discarded and re-collected. Deficiencies are documented in logbooks, field data sheets, etc. by field or laboratory staff, are communicated to the LCRA Project Manager (or other appropriate staff) and should be subject to periodic review so their responses can be uniform, and their frequency tracked. It is the responsibility of the LCRA Project Manager, in consultation with the LCRA QAO, to ensure that the actions and resolutions to the problems are documented and that records are maintained in accordance with this QAPP. In addition, these actions and resolutions will be conveyed to the CRP Project Manager both verbally and in writing in quarterly progress reports and by completion of a CAP.

Corrective Action


CAPs should:

- Identify the problem, nonconformity, or undesirable situation,
- Identify immediate remedial actions, if possible,
- Identify the underlying cause(s) of the problem,
- Identify whether the problem is likely to recur, or occur in other areas,
- Assist in determining the need for corrective action,
- Employ problem-solving techniques to verify causes, determine solution, and develop an action plan,
- Identify personnel responsible for action,
- Establish timelines and provide a schedule,
- Document the corrective action.

A flow chart has been developed to facilitate the process (see figure C1.1: Corrective Action Process for Deficiencies).

Figure C1.1 Corrective Action Process for Deficiencies

Corrective Action Process for Deficiencies

The status of CAPs will be included with quarterly progress reports. In addition, significant conditions which, if uncorrected, could have a serious effect on safety or on the validity or integrity of data will be reported to the TCEQ immediately.

The LCRA Project Manager is responsible for ensuring that corrective actions have been implemented and tracks deficiencies and corrective actions. Records of audit findings and corrective actions are maintained by the LCRA Project Manager. Audit reports and associated corrective action documentation will be submitted to the TCEQ with the quarterly progress reports.

If audit findings and corrective actions cannot be resolved, then the authority and responsibility for terminating work are specified in the TCEQ QMP and in agreements in contracts between participating organizations.

C2 Reports to Management

Table C2.1 QA Management Reports

Type of Report	Frequency (daily, weekly, monthly, quarterly, etc.)	Projected Delivery Date(s)	Person(s) Responsible for Report Preparation	Report Recipients
Non-Conformance Report	As Needed	As Needed	Field Staff Laboratory Staff	LCRA QA Staff or Laboratory Management, as appropriate
CRP Progress Reports	Quarterly	December 15, 2021 March 15, 2022 June 15, 2022 September 15, 2022 December 15, 2022 March 15, 2023 June 15, 2023 August 31, 2023	Basin Planning Agency Project Manager	TCEQ CRP Project Management
Monitoring Systems Audit Report and Response	As Needed	As Needed	LCRA QAO	TCEQ CRP Project Management
Data Summary	As Needed	As Needed	LCRA Data Manager	TCEQ CRP Project Management

Reports to LCRA Project Management

Results of oversight activities, deficiencies, corrective action reports, and significant QA issues are reported to the LCRA PM on an ongoing basis. They may or may not be written reports.

Reports to TCEQ Project Management

All reports detailed in this section are contract deliverables and are transferred to the TCEQ in accordance with contract requirements.

Progress Report

The progress report is prepared by the LCRA Project Manager and summarizes the LCRA and UCRA's activities for each task; reports monitoring status, problems, delays, deficiencies, status of open CAPs, and documentation for completed CAPs; and outlines the status of each task's deliverables.

Monitoring Systems Audit Report and Response

Following any audit performed by the LCRA, a report of findings, recommendations and response is sent to the

TCEQ in the quarterly progress report.

Data Summary

The data summary reports contain basic identifying information about the data set and comments regarding inconsistencies and errors identified during data verification and validation steps or problems with data collection efforts (e.g. deficiencies).

Reports by TCEQ Project Management

Contractor Evaluation

LCRA participates in a Contractor Evaluation by the TCEQ annually for compliance with administrative and programmatic standards. Results of the evaluation are submitted to the TCEQ Financial Administration Division, Procurement and Contracts Section.

D1 Data Review, Verification, and Validation

All field and laboratory data will be reviewed and verified for integrity and continuity, reasonableness, and conformance to project requirements, and then validated against the project objectives and measurement performance specifications which are listed in Section A7 of this QAPP. Only those data which are supported by appropriate quality control data and meet the measurement performance specifications defined for this project will be considered acceptable and will be reported to the TCEQ for entry into SWQMIS.

D2 Verification and Validation Methods

All field and laboratory data will be reviewed, verified and validated to ensure they conform to project specifications.

Data review, verification, and validation will be performed using self-assessments as well as peer and management review as appropriate to the project task. The data review tasks to be performed by field and laboratory staff are listed in the first two columns of Table D2.1, respectively. Potential errors are identified by examination of documentation and by manual examination of corollary or unreasonable data; this analysis may be computer-assisted. If a question arises or an error is identified, the manager of the task responsible for generating the data is contacted to resolve the issue. Issues which can be corrected are corrected and documented. If an issue cannot be corrected, the task manager consults with the higher-level project management to establish the appropriate course of action, or the data associated with the issue are rejected and not reported to the TCEQ for storage in SWQMIS. Field and laboratory reviews, verifications, and validations are documented.

After the field and laboratory data are reviewed, another level of review is performed once the data are combined into a data set. This review step as specified in Table D2.1 is performed by the Lower Colorado River Authority Data Manager/QAO position. Data review, verification, and validation tasks to be performed on the data set include, but are not limited to, the confirmation of laboratory and field data review, evaluation of field QC results, additional evaluation of anomalies and outliers, analysis of sampling and analytical gaps, and confirmation that all parameters and sampling sites are included in the QAPP.

The Data Review Checklist (see Appendix F) covers three main types of review: data format and structure, data quality review, and documentation review. The Data Review Checklist is transferred with the water quality data submitted to the TCEQ to ensure that the review process is being performed.

Another element of the data validation process is consideration of any findings identified during the monitoring systems audit conducted by the TCEQ CRP Lead Quality Assurance Specialist. Any issues requiring corrective action must be addressed, and the potential impact of these issues on previously collected data will be assessed. After the data are reviewed and documented, the Lower Colorado River Authority Project Manager validates that the data meet the data quality objectives of the project and are suitable for reporting to TCEQ.

If any requirements or specifications of the CRP are not met, based on any part of the data review, the responsible party should document the nonconforming activities and submit the information to the Lower Colorado River Authority Data Manager with the data in the Data Summary (See Appendix F). All failed QC checks, missing samples, missing analytes, missing parameters, and suspect results should be discussed in the Data Summary.

Monitoring agencies under this QAPP have SOPs in place to ensure collection of valid field data. UCRA uses the latest version of *SWQM Procedures* manual to guide monitoring efforts. City of Austin water quality field sample collection and processing procedures are described in the *Water Resource Evaluation (WRE) Section Standard Operating Procedures Manual* and are consistent with approved methods as presented in the TCEQ *SWQM Procedures* manuals.

LIMS are used by ELS and DHL. LIMS consist of a collection of forms, reports, queries and tables that are used to track and manage the analytical process for laboratory reporting.

For ELS, data entry (i.e., instrument readings entered into the LIMS) is performed by the analyst and verified through a multi-level review process. Additionally, LIMS flags data that are outside of program specifications.

Lower Colorado River Authority QAPP

Page 40

Lorafy2223CRPQAPP_Final.docx

ELS utilizes a multi-level data review and validation workflow within LIMS prior to data being reported to clients. The final check of the data is performed by the ELS project manager or designee. At DHL, data transformations occur in the following fashion: after the data acquisition by the instrument software is completed and the sample preparation log is prepared, reviewed, and initialed by the analyst, the data is imported electronically into the LIMS for the purpose of report generation and review. All analytical results follow the rules for significant figures. The analyst will verify all imported LIMS data against the raw data records to ensure that the sample results are accurate. When manual integrations are performed, raw data records shall include a complete audit trail for those manipulations (i.e., the reconstruction of the results). The person performing the manual integration must sign and date each chromatogram and document the rationale for performing manual integration (electronic signature is acceptable). If the sample result from any target analyte exceeds the quantitation range, the sample shall be diluted and reported from the reanalysis.

For ELS, data conversions are configured to occur automatically within LIMS. Several factors determine whether conversions are needed, including the particular analytical test, the sample matrix, and any client reporting requirements. Regarding data conversions for DHL, the concentration of each analyte is calculated by using either the average response factors or regression analysis. The analyst must ensure that all confirmed hits are within the calibration range. If not, a dilution will be needed to re-analyze the sample extract. The raw data is converted into the final sample concentration based on the sample weight and final volume of extract. The formulas and acceptance criteria for each analytical test are imbedded in the LIMS for automatic data calculation. The LIMS flags data automatically that does not meet acceptance criteria.

At ELS, when nonconforming analyses are identified, the samples will be prepared again and reanalyzed, where possible. If reanalysis is impossible and data is lost, the ELS Project Manager notifies the client either verbally or via electronic mail that data has been lost. An investigation is initiated and a corrective action report is produced to correct the error and prevent it from reoccurring.

DHL evaluates the significance of the nonconforming work, and takes corrective action immediately. A Variance Report is generated, the client is notified if their data has been impacted, and corrective action is placed in the Case Narrative of the Analytical Report. Resumption of work after nonconformance is authorized by the Laboratory General Manager, Laboratory QA Manager, and/or the client. Whenever the quality control goals set for precision or accuracy of data are not achieved, a program of corrective action shall be initiated. QC criteria shall be specified in each individual Standard Operating Procedure (SOP). Corrective action can also be initiated by other items such as control limits, customer concerns, or by method specific criteria.

DHL uses data review checklists at each level of review based on project-specific requirements. DHL practices a three-tiered level of analytical data review and reporting.

- The chemist performing the analysis reviews the entire data package (100%), ensuring that all of the data is acceptable and within the guidelines established by the specific method and project-specific requirements.
- After the chemist has reviewed the data, the laboratory supervisor, senior chemist or QA department staff will review the entire package (100%) using the same criteria as the chemist.
- The Laboratory General Manager (or designee) will review the data package for completeness before the data is released.

When a quality control problem is noted in DHL data, the following steps are taken to identify and correct the problem:

- The raw data records are re-examined by the analyst.
- The analyst re-analyzes the sample(s), as appropriate.
- If the problem is not resolved by re-analysis, the Laboratory General Manager or QA Manager is consulted to provide additional information about rectifying the problem.
- If instrument-related problems cannot be resolved in-house, then equipment repaircontractors manufacturer's representatives or outside consultants are contacted as necessary.

- All information is documented on a specific analytical Variance Report, which is reviewed and signed by the QA manager or the Laboratory General Manager and then stored in the associated project folders.
- Clients may authorize the analysis of samples that may not meet QC criteria (e.g. samples out of hold time, samples received above temperature limit). All data resulting from such situations shall be appropriately flagged with data qualifiers in the report.
- All information shall be documented in the final report and summarized in the case narrative. This shall include data flags, if applicable.
- Information on the incident and corrective actions shall be noted in the instrument maintenance logbook (if applicable).

The LCRA Data Manager maintains a CRP Data Submittal Guidance SOP that describes how UCRA and COA data are processed. The document describes specifics in data checks and data handling. Final checks on the data submitted by agencies represented in this QAPP can also be found in CRP Data Submittal Guidance SOP. The document also contains information on how to upload data into SWQMIS.

Table D2.1: Data Review Tasks

Data to be Verified	Field Task ¹	Laboratory Task ²	QA Task ³	Lead Organization Data Manager Task ⁴
Sample documentation complete; samples labeled, sites identified	X	Tusk		Data Manager Tusk
Field QC samples collected for all analytes as prescribed in the TCEQ SWQM Procedures	X			
Standards and reagents traceable	X	X		
Chain of custody complete/acceptable	X	X		
NELAP Accreditation is current		X	X	
Sample preservation and handling acceptable		X		
Holding times not exceeded		X		
Collection, preparation, and analysis consistent with SOPs and QAPP	X	X	X	
Field documentation (e.g., biological, stream habitat) complete	X			
Instrument calibration data complete	X	X		
QC samples analyzed at required frequency		X	X	
QC results meet performance and program specifications		X	X	
Analytical sensitivity (LOQ/AWRL) consistent with QAPP		X	X	
Results, calculations, transcriptions checked		X	X	
Laboratory bench-level review performed		X		
All laboratory samples analyzed for all scheduled parameters		X	X	
Corollary data agree			X	
Nonconforming activities documented	X	X	X	X
Outliers confirmed and documented; reasonableness check	A.	A	Λ	
performed				X
Dates formatted correctly	X	X		X
Depth reported correctly and in correct units	X	X		X
TAG IDs correct				X
TCEQ Station ID number assigned				X
Valid parameter codes				X
Codes for submitting entity(ies), collecting entity(ies), and monitoring type(s) used correctly				X
Time based on 24-hour clock	1			X
Check for transcription errors	X	X	X	X
Sampling and analytical data gaps checked (e.g., all sites for which data are reported are on the coordinated monitoring schedule)			X	X
Field instrument pre- and post-calibration check results within limits	X		X	
10% of data manually reviewed			X	

¹ Field Task Review is performed by field team personnel and overseen by ELS PM, UCRA DM/QAO and COA

² Laboratory Task Review is performed by ELS personnel and overseen by ELS QA Manager and PM, and DHL **QA** Manager

³ QA Task Review is performed by ELS personnel and overseen by ELS QA Manager and PM, and DHL QA Manager

⁴ Lead Organization Data Management Task is performed by LCRA DM and QAO position. Lower Colorado River Authority QAPP

D3 Reconciliation with User Requirements

Data produced in this project, and data collected by other organizations (e.g., USGS, TCEQ, etc.), will be analyzed and reconciled with project data quality requirements. Data which do not meet requirements will not be submitted to SWQMIS nor will be considered appropriate for any of the uses noted in Section A5.

Appendix A: Measurement Performance Specifications (Table A7.1-17)

Procedures for laboratory analysis must be in accordance with the most recently published edition of Standard Methods for the Examination of Water and Wastewater, 40 CFR 136, or otherwise approved independently. Only data collected that have a valid TCEQ parameter code assigned in Tables A7 are stored in SWQMIS. Any parameters listed in Tables A7 that do not have a valid TCEQ parameter code assigned will not be stored in SWQMIS.

Table A7.1 - Measurement Performance Specifications

Appendix B: Task 3 Work Plan & Sampling Process Design and Monitoring Schedule (Plan)

TASK 3: WATER QUALITY MONITORING

Objectives: Water quality monitoring will focus on the characterization of a variety of locations and conditions. This will include a combination of the following:

- planning and coordinating basin-wide monitoring;
- routine, regularly-scheduled monitoring to collect long-term information and support statewide assessment of water quality; and
- systematic, regularly-scheduled short-term monitoring to screen water bodies for issues.

Task Description:

The Performing Party will monitor water quality in the Colorado River and tributaries downstream of O.H. Ivie Reservoir and coordinate with the UCRA to ensure sites are monitored upstream of O.H. Ivie Reservoir. Coordinated monitoring meetings will be held annually and the statewide coordinated monitoring schedule will be maintained.

The Performing Party will complete the following subtasks:

Monitoring Description -

Performing Party Monitoring

The Performing Party will routinely monitor at least forty-four (44) sites in the Colorado River basin below O.H. Ivie Reservoir; thirty-five (35) sites will be sampled six (6) times per year, six (6) sites will be sampled quarterly, and one site will be sampled twice per year. Field data only will be collected from one site. The remainder of the sites will be analyzed for field, conventional, flow and bacteria parameters. Additional details about the monitoring activities conducted by the Performing Party are outlined in the Performing Party basin-wide QAPP.

UCRA Monitoring

In cooperation with the Upper Colorado River Authority (UCRA), the Performing Party will have at least thirty-two (32) sites in the Colorado River basin above O.H. Ivie Reservoir routinely monitored. Stream sites will be monitored quarterly for flow, conventional and field parameters, and bacteria. Reservoir sites will be monitored twice annually to include field and conventional parameters, bacteriological samples and elevation. Twenty-four-hour (24 hr.) diel monitoring will be done twice annually at three (3) sites, with one event during the index period and one event during the critical period. Additional details concerning the monitoring activities conducted by UCRA are outlined in the Performing Party basin wide QAPP.

Additional details concerning the monitoring activities conducted by unfunded data providers will be outlined in the Performing Party basin-wide QAPP.

In FY 2023, partners will monitor at a similar level of effort as in FY 2022. The actual number of sites, location, frequency, and parameters collected for FY 2023 will be based on priorities identified at the basin Water Quality Advisory Committee (WQAC) and Coordinated Monitoring meetings and included in the amended Appendix B schedule of the OAPP.

All monitoring will be completed in accordance with the Performing Party QAPP, the TCEQ Surface Water Quality Monitoring Procedures, Volume 1: Physical and Chemical Monitoring Methods (RG-415) and the TCEQ Surface Water Quality Monitoring Procedures, Volume 2: Methods for Collecting and Analyzing Biological Assemblage and Habitat Data (RG-416).

Coordinated Monitoring Meeting - The Performing Party will hold an annual coordinated monitoring meeting as described in the FY 2022-2023 CRP Guidance. Qualified monitoring organizations will be invited to attend the working meeting in which monitoring needs and purposes will be discussed segment by segment and station by station. Information from participants and stakeholders will be used to select stations and parameters that will enhance overall water quality monitoring coverage, eliminate duplication of effort, and address basin priorities. A summary of the changes to the monitoring schedule will be provided to the participants within two

weeks of the meeting. Changes to the monitoring schedule will be entered into the statewide Coordinated Monitoring Schedule (http://cms.lcra.org) and communicated to meeting attendees. Changes to monitoring schedules that occur during the year will be entered into the Coordinated Monitoring Schedule and communicated to meeting attendees. All requirements related to meetings will be followed and required meetings will be conducted in-person or via TCEQ-approved virtual format.

The Performing Party will maintain the statewide Internet-based Coordinated Monitoring Schedule web site (CMS). The Performing Party will provide technical support to authorized users of the database by responding to calls, making changes to schedules, and adapting the web page as determined by the TCEQ Project Manager and the Performing Party Staff.

Progress Report - Each Progress Report will include all types of monitoring and indicate the number of sampling events and the types of monitoring conducted in the quarter.

Deliverables and Due Dates:

September 1, 2021 through August 31, 2022

- A. Conduct water quality monitoring, summarize activities, and submit with Progress Report December 15, 2021; March 15 and June 15, 2022;
- B. Coordinated Monitoring Meeting between March 15 and April 30, 2022;
- C. Coordinated Monitoring Meeting Summary of Changes within 2 weeks of the meeting; and
- D. Email notification that Coordinated Monitoring Schedule updates are complete May 31, 2022.

September 1, 2022 through August 31, 2023

- A. Conduct water quality monitoring, summarize activities, and submit with Progress Report September 15 and December 15, 2022; March 15, June 15, and August 31, 2023;
- B. Coordinated Monitoring Meeting between March 15 and April 30, 2023;
- C. Coordinated Monitoring Meeting Summary of Changes within 2 weeks of the meeting; and
- D. Email notification that Coordinated Monitoring Schedule updates are complete May 31, 2023.

Appendix B Sampling Process Design and Monitoring Schedule (plan)

Sample Design Rationale FY 2022

The sample design is based on the legislative intent of CRP. Under the legislation, the LCRA has been tasked with providing data to characterize water quality conditions in support of the Texas Water Quality Integrated Report, and to identify significant long-term water quality trends. Based on Steering Committee input, achievable water quality objectives and priorities and the identification of water quality issues are used to develop work plans which are in accord with available resources. As part of the Steering Committee process, the LCRA coordinates closely with the TCEQ and other participants to ensure a comprehensive water monitoring strategy within the watershed.

- An established but inactive site on Alum Creek station 16188 was added for routine monitoring.
- An established but inactive Buckners Creek station 17053 was added for 24-hr dissolved oxygen monitoring.
- An established but inactive Gilleland Creek station 18762 was added for routine data collection.

Segment	Site	CE	Change
1401			No Changes
1402	17053	LC	Added
1403	12297	AU	Frequency change from 6 to 8
1403	12294	AU	Frequency change from 6 to 8
1403	12216	AU	Frequency change from 1 to 3
1404			No changes
1405			
1406			

Segment	Site	CE	Change
1407			
1408			
1409			No Changes
1410			No Changes
1414			No Changes
1415			No Changes
1416			No Changes
1417			No Changes
1424	18711	UC	Removed
1427	12451	AU	Frequency change from 1 to 3
1428	18762	LC	Added
1428	12231	AU	Frequency change from 3 to 1
1428	12235	AU	Frequency change from 3 to 1
1428	12236	AU	Frequency change from 3 to 1
1429	17310	AU	Frequency change from 3 to 1
1430	13555	AU	Frequency change from 3 to 1
1434	16188	LC	Added

Site Selection Criteria

This data collection effort involves monitoring routine water quality using procedures that are consistent with the TCEQ SWQM program. Some general guidelines are followed when selecting sampling sites, as outlined below, and discussed thoroughly in SWQM Procedures, Volumes I and II. Overall consideration is given to accessibility and safety. All monitoring activities have been developed in coordination with the CRP Steering Committee and with the TCEQ. The site selection criteria specified are those the TCEQ would like considered to produce data which is complementary to that collected by the state and which may be used in assessments, etc.

- 1. Locate stream sites so that samples can be safely collected from the centroid of flow. Centroid is defined as the midpoint of that portion of stream width which contains 50 percent of the total flow. If multiple potential sites on a stream segment are appropriate for monitoring, choose one that would best represent the water body, and not a site that displays unusual conditions or contaminant source(s). Avoid backwater areas or eddies when selecting a stream site.
- 2. At a minimum for reservoirs, locate sites near the dam (reservoirs) and in the major arms. Larger reservoirs might also include stations in the middle and upper (riverine) areas. Select sites that best represent the water body by avoiding coves and back water areas. A single monitoring site is considered representative of 25 percent of the total reservoir acres, but not more than 5,120 acres.
- 3. Monitoring sites are selected to maximize stream coverage or basin coverage. Very long segments may require more stations. As a rule of thumb, stream segments between 25 and 50 miles long require two stations, and longer than 50 miles require three or more depending on the existence of areas with significantly different sources of contamination or potential water quality concerns. Major hydrological features, such as the confluence of a major tributary or an instream dam, may also limit the spatial extent of an assessment based on one station.
- 4. Because historical water quality data can be very useful in assessing use attainment or impairment, it may be best to use sites that are on current or past monitoring schedules.
- 5. All classified segments (including reservoirs) should have at least one Monitoring site that adequately characterizes the water body, and monitoring should be coordinated with the TCEQ or other qualified monitoring entities reporting routine data to TCEQ.
- 6. Monitoring sites may be selected to bracket sources of pollution, influence of tributaries, changes in land uses, and hydrological modifications.
- 7. Sites should be accessible. When possible, stream sites should have a USGS or IBWC stream flow gauge. If not, it should be possible to conduct flow measurement during routine visits.

Monitoring Sites for FY 2022

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
COLORADO RIVER TIDAL AT SELKIRK ISLAND 2 MI DOWNSTREAM FROM FM 521 SW OF WADSWORTH	12281	1401	14	12	LC	LC	RT	6	6	6													
COLORADO RIVER 20 METERS UPSTREAM OF FM 960 NEAR GLEN FLORA	21809	1402	14	12	LC	LC	RT	6		6	6												Added in 2017 to bracket site 12286 for bacteria impairment
COLORADO RIVER APPROXIMATELY 15 M OFF EAST BANK IMMEDIATELY DOWNSTREAM OF US ALT 90 NEAR ALTAIR	18351	1402	14	12	LC	LC	RT	6	6	6	6												Garwood site dropped FY 06
COLORADO RIVER APPROXIMATELY 367 METERS DOWNSTREAM OF SH 183 IN WHARTON	12286	1402	14	12	LC	LC	RT	6	6	6	6												
COLORADO RIVER AT OLD HWY 71 IN COLUMBUS	12290	1402	14	12	LC	LC	RT	6	6	6	6												
COLORADO RIVER AT PECAN VALLEY ROAD BOAT RAMP 290 METERS NORTH	21808	1402	14	12	LC	LC	RT	6		6	6												Added in 2017 to bracket site 12286 for bacteria

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
AND 50 METERS EAST OF THE INTERSECTION OF PECAN VALLEY ROAD AND NELSON ROAD / WHARTON CR 167																							impairment
COLORADO RIVER AT SH 35 BRIDGE AT BAY CITY	12284	1402	14	12	LC	LC	RT	6	6	6	6												
BUCKNERS CREEK AT FAYETTE CR137/COUNTRY CLUB ROAD SW OF LA GRANGE	17053	1402C	14	11	LC	LC	BS	5			5	5											
FAYETTE RESERVOIR AT THE MID POINT OF THE LAKE OVER CEDAR CREEK CHANNEL APPROX 150 YDS NORTH OF THE BAFFLE DIKE	17017	1402G	14	11	LC	LC	RT	6	6	6													
LAKE AUSTIN NEAR METROPOLITAN PARK TO THE SOUTH OF CITY PARK RD AND TO THE EAST OF WESTON RD	12297	1403	14	11	LC	AU	RT	3	3	3													added samples for the growing season (May, July, September)
LAKE AUSTIN NEAR METROPOLITAN PARK TO THE	12297	1403	14	11	LC	LC	RT	8	8	8													

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
SOUTH OF CITY PARK RD AND TO THE EAST OF WESTON RD																							
LAKE AUSTIN NEAR TOM MILLER DAM TO THE WEST OF LAKE AUSTIN BLVD	12294	1403	14	11	LC	ΑU	RT	3	3	3								1	1				field added to match Bact and Conv in consult W/ COA
LAKE AUSTIN NEAR TOM MILLER DAM TO THE WEST OF LAKE AUSTIN BLVD	12294	1403	14	11	LC	LC	RT	8	8	8													
BULL CREEK AT LOOP 360 1 MILE NORTH OF FM 2222 INTERSECTION WEST OF AUSTIN	12216	1403A	14	11	LC	ΑU	RT	3	3	3	3												
BULL CREEK AT SPICEWOOD SPRINGS RD 5TH CROSSING TO THE WEST OF YUCCA MOUNTAIN RD	12218	1403A	14	11	LC	AU	RT	2			2	2											
SPICEWOOD TRIBUTARY OF SHOAL CREEK APPROX 13 METERS DOWNSTREAM OF CEBERRY DR IN AUSTIN	16316	1403J	14	11	LC	ΑU	RT	4	4	4	4												Added for TMDL
TAYLOR SLOUGH SOUTH 20 M DOWNSTREAM OF	17294	1403K	14	11	LC	AU	RT	4	4	4	4												Added for TMDL

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
PECOS STREET SOUTH OF RIVER ROAD IN AUSTIN																							
LAKE TRAVIS AT ARKANSAS BEND TO THE WEST OF RANCH ROAD 620	12309	1404	14	11	LC	LC	RT	6	6	6													
LAKE TRAVIS IN BEE CREEK COVE 191 M NORTH AND 443 M WEST OF THE INTERSECTION OF BEE CREEK ROAD AND CORY LANE	20070	1404	14	11	LC	LC	RT	6	6	6													
LAKE TRAVIS IN BIG SANDY CREEK COVE 1.25 KM DOWNSTREAM OF THE CONFLUENCE WITH LIME CREEK/BRUSHY CREEK 140 M SE OF THE END OF TRAIL END RD AND 1.4 KM WEST OF FM 973	12307	1404	14	11	LC	LC	RT	6	6	6													
LAKE TRAVIS IN THE HURST CREEK ARM APPROX 200 YDS UPSTREAM OF HURST HARBOR NEAR LADIN LANE IN LAKEWAY SUBDIVISION	15428	1404	14	11	LC	LC	RT	6	6	6													

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox Sed	Comments
LAKE TRAVIS MID LAKE AT CONFLUENCE WITH COW CREEK ARM AT PACE BEND APPROXIMATELY 2.02 KILOMETERS TO THE SOUTH OF FM 1431	12313	1404	14	11	LC	LC	RT	6	6	6													
LAKE TRAVIS NEAR DAM AT LCRA TRAVIS COUNTY PARK	12302	1404	14	11	LC	LC	RT	6	6	6													
LAKE TRAVIS NEAR SPICEWOOD EAST OF SHAW RD AND NORTH OF MULE SHOE BEND RD	12316	1404	14	11	LC	LC	RT	6	6	6													
LAKE MARBLE FALLS NEAR MAX STARCKE DAM/TO SOUTHEAST OF COMINO REAL RD	12319	1405	14	11	LC	LC	RT	6	6	6													
LAKE LYNDON B JOHNSON AT CONFLUENCE WITH LLANO RIVER ARM NEAR KINGSLAND APPROX 51 METERS TO THE SOUTHWEST OF SCENIC RD	12330	1406	14	11	LC	LC	RT	6	6	6													
LAKE LYNDON B	12327	1406	14	11	LC	LC	RT	6	6	6													

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
JOHNSON AT CONFLUENCE WITH SANDY CREEK APPROX 453 METERS TO THE NORTH OF BLUE MOUNTAIN RD																							
LAKE LYNDON B JOHNSON NEAR ALVIN WIRTZ DAM APPROX 658 METERS NORTH OF FM 2147	12324	1406	14	11	LC	LC	RT	6	6	6													
SANDY CREEK APPROXIMATELY 73 M DOWNSTREAM OF SH 71 SOUTH OF KINGSLAND	12214	1406A	14	11	LC	LC	RT	6	6	6	6												
INKS LAKE NEAR INKS DAM APPROX 161 METERS TO THE NORTHEAST OF ROY INKS DAM	12336	1407	14	11	LC	LC	RT	6	6	6													
CLEAR CREEK 1.28 KM UPSTREAM OF SH 29	18710	1407A	14	11	LC	LC	RT	6			6												stopped conventional/met als in 2014. Will resume when TCEQ permit is approved
LAKE BUCHANAN AT CONFLUENCE OF COUNCIL AND MORGAN CREEKS	12349	1408	14	11	LC	LC	RT	6	6	6													

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
APPROX 302 METERS SOUTH OF LAKESHORE RD																						
LAKE BUCHANAN AT ROCKY POINT APPROX 1.3.KM NORTHWEST OF ROCKY RIDGE	12347	1408	14	11	LC	LC	RT	6 6	6													
LAKE BUCHANAN NEAR BEAVER CREEK COVE ADJACENT TO PARADISE POINT APPROX 1.4 KM TO THE SOUTH OF RANCH ROAD 2341	12352	1408	14	11	LC	LC	RT	6 6	6													
LAKE BUCHANAN NEAR BUCHANAN DAM APPROX 475 METERS TO THE WEST OF CORONADO RD	12344	1408	14	11	LC	LC	RT	6 6	6													
LAKE BUCHANAN NEAR LAKE HEADWATER APPROX 687 METERS TO THE NORTHEAST OF LLANO TOW VALLEY RD	12353	1408	14	11	LC	LC	RT	6 6	6													
COLORADO RIVER AT US 190 EAST OF SAN SABA	12355	1409	14	9	LC	LC	RT	6 6	6	6												

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
CHEROKEE CREEK AT FM 501 5 MILES WEST OF BEND	12274	1409A	14	9	LC	LC	RT	2	2	2	2												
COLORADO RIVER BRIDGE ON US 377 AT WINCHELL	12358	1410	14	3	LC	LC	RT	6	6	6	6												
E V SPENCE RESERVOIR APPROX 5.3 KM WEST OF STATE HIGHWAY 208	12359	1411	14	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
E V SPENCE RESERVOIR AT DAM 1.75 KM WEST OF THE INTERSECTION OF FM 1904 AND ST LOOP 229	13863	1411	14	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
E V SPENCE RESERVOIR FM 2059 BRIDGE NEAR SILVER	12360	1411	14	8	LC	UC	RT	4	4	4	4												
COLORADO RIVER AT MITCHELL CR343/PECAN CROSSING 7.5KM WEST OF SH208 AND 25.0KM SOUTH OF COLORADO CITY AT IH20	17002	1412	14	3	LC	UC	RT	4	4		4												Chlorophyll 4x year
BEALS CREEK 35 M DOWNSTREAM OF SH 163	12156	1412B	14	3	LC	UC	RT	4	4		4												Chlorophyll 4x year

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	IM	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
APPROXIMATELY 11 MI SOUTH OF WESTBROOK																							
LAKE J B THOMAS AT DAM APPROX 1.0 KM WEST OF THE INTERSECTION OF FM 1298 AND SCURRY CR 8	21614	1413	14	3	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
PEDERNALES RIVER 20 METERS UPSTREAM OF PEDERNALES HILLS ROAD	21398	1414	14	11	LC	LC	RT	6	6	6	6												added in 2014 to replace 12372 (Ped at Johnson City)
PEDERNALES RIVER AT CR 962 AT HAMMETT'S CROSSING APPROX 532 METERS TO THE EAST OF HAMMETS ROAD		1414	14	11	LC	LC	RT	6	6	6	6												
PEDERNALES RIVER AT FM 1320	12375	1414	14	11	LC	LC	RT	6	6	6	6												
PEDERNALES RIVER AT GOEHMAN LANE CROSSING EAST OF FREDRICKSBURG OFF OF US 290 E APPROX 1.5 KM TO THE NORTH OF US HWY290	12377	1414	14	13	LC	LC	RT	6	6	6	6												Added in 2016 after TCEQ San Antonio dropped
PEDERNALES RIVER AT US 87 APPROX	17472	1414	14	13	LC	LC	RT	6	6	6	6												

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	nents
S Desc	Stati	Wate I	Ř	Re	J 1	J	4	臣 (<u>ٽ</u>	Вас	Œ	24 h	Αq	Веп	Ne	M	Org	Met	Organ	Fish	Aml W	Aml	Comments
3.0 MILES SOUTH OF FREDERICKSBURG																							
LLANO RIVER 0.4 MILE DOWNSTREAM FROM BRIDGE ON SH 16 AT LLANO	12386	1415	14	11	LC	LC	RT	6 (6	6	6												
LLANO RIVER AT YATES CROSSING ON RR 385 15 MI EAST OF JUNCTION IN KIMBLE COUNTY	14231	1415	14	8	LC	LC	RT	4 4	4	4	4												
LLANO RIVER COUNTY ROAD 6.5 MILES UPSTREAM FROM KINGSLAND/LLANO RIVER AT RANCH ROAD 3404	12383	1415	14	11	LC	LC	RT	6 (6	6	6												
NORTH LLANO RIVER 75 METERS UPSTREAM OF US 377 IN JUNCTION	21548	1415	14	8	LC	LC	RT	4 4	4	4	4												moved upstream of 17245 in 2015 because site was frequently dry
SOUTH LLANO RIVER APPROXIMATELY 10 MI UPSTREAM OF SOUTH LLANO RIVER STATE PARK 204 YD UPSTREAM OF SECOND US 377 CROSSING	18197	1415	14	8	LC	LC	RT	4 4	4	4													
JOHNSON FORK	21812	1415A	14	8	LC	LC	RT	4	4	4	4												Site 13550 was

Site	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
CREEK 10 METERS UPSTREAM OF KIMBLE CR 410 SOUTHEAST OF JUNCTION																							taken over from TCEQ in 2014. Moved downstream in 2017 to capture more of the watershed
JAMES RIVER/AT JAMES RIVER RD AT UPPER MASON COUNTY ROAD CROSSING 14 MILES SOUTHWEST OF MASON	12210	1415C	14	8	LC	LC	RT	4	4	4	4												
SAN SABA RIVER AT SH 16 NORTH OF SAN SABA	12392	1416	14	9	LC	LC	RT	6	6	6	6												
SAN SABA RIVER IMMEDIATELY DOWNSTREAM OF US87	17004	1416	14	8	LC	LC	RT	4	4	4	4												
BRADY CREEK 2.81 KM DOWNSTREAM OF RR 714	14232	1416A	14	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
BRADY CREEK RESERVOIR MID LAKE NEAR DAM/SOUTHEAST BOUND OFF RANCH ROAD 3022	12179	1416B	14	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
LOWER PECAN BAYOU AT FM 573 SOUTHWEST OF	12394	1417	14	9	LC	LC	RT	6	6	6	6												

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
MULLIN																							
CONCHO RIVER 235 M DOWNSTREAM OF S BELL ST AND 540 M DOWNSTREAM FROM CONFLUENCE OF NORTH AND SOUTH FORKS IN SAN ANGELO	12409	1421	14	8	LC	UC	BS				2	2											24 hour DO sampling
CONCHO RIVER 235 M DOWNSTREAM OF S BELL ST AND 540 M DOWNSTREAM FROM CONFLUENCE OF NORTH AND SOUTH FORKS IN SAN ANGELO	12409	1421	14	8	LC	UC	RT	4	4	4	4												Chloroyphyll 4x year
CONCHO RIVER AT FM1692 SOUTH OF MILES	12403	1421	14	8	LC	UC	RT	4	4	4	4												Chloroyphyll 4x year
CONCHO RIVER AT FM380 NEAR VERIBEST	12407	1421	14	8	LC	UC	RT	4	4	4	4												
CONCHO RIVER AT FM381	12402	1421	14	8	LC	UC	RT	4	4		4												
CONCHO RIVER BRIDGE ON US83 AT PAINT ROCK	12401	1421	14	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
CONCHO RIVER SOUTH FORK AT	12416	1421	14	8	LC	UC	RT	4	4	4	4												

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
US87																							
NORTH CONCHO RIVER 20M UPSTREAM OF IRVING STREET DAM IN SAN ANGELO TOM GREEN COUNTYTEXAS	12412	1421	14	8	LC	UC	BS				2	2											24 hour DO sampling. Flow is measured at 15886
NORTH CONCHO RIVER AT CADDO ST IN SAN ANGELO	15886	1421	14	8	LC	UC	BS				2	2											24 hour DO sampling
NORTH CONCHO RIVER AT CADDO ST IN SAN ANGELO	15886	1421	14	8	LC	UC	RT	4 4	4	4	4												
DRY HOLLOW CREEK AT HEADWATERS OF CHANDLER LAKE APPROXIMATELY 484 M TO THE EAST OF PRIVATE ROAD 1775	12257	1421A	14	8	LC	UC	RT	4 4	4		4												
KICKAPOO CREEK AT FM 380	12255	1421B	14	8	LC	UC	RT	4	4		4												
LIPAN CREEK APPROX 900M UPSTREAM OF THE CONFLUENCE OF THE CONCHO RIVER ON PRIVATE PROPERTY	12254	1421C	14	8	LC	UC	RT	4 4	4		4												

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
LAKE NASWORTHY 40 M WEST OF DAM CENTERPOINT APPROX 1.3 KM TO THE NORTH OF COUNTRY CLUB RD	12418	1422	14	8	LC	UC	RT	2	2	2													UCRA Sample Q2 and Q4
LAKE NASWORTHY IN RIVER CHANNEL IN SOUTH CONCHO ARM 880 M WEST AND 220 M NORTH OF SOUTH COUNTRY CLUB ROAD AT LAS LOMAS COURT	12419	1422	14	8	LC	UC	RT	2	2	2													UCRA Sample Q2 and Q4
LAKE NASWORTHY MIDDLE COVE 120 M DOWNSTREAM OF CENTER POINT OF CONFLUENCE OF MIDDLE CONCHO AND SPRING CREEK CHANNELS	12421	1422	14	8	LC	UC	RT	2	2	2													UCRA Sample Q2 and Q4
TWIN BUTTES RESERVOIR AT DAM 695 M SOUTH AND 195 M WEST OF INTAKE STRUCTURE TO LAKE NASWORTHY	12422	1423	14	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
TWIN BUTTES RESERVOIR SOUTH POOL RIVER	12425	1423	14	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
CHANNEL NEAR DAM APPROX 21 METERS TO THE WEST OF MOTL DAM																							Q4
SPRING CREEK AT LAKE AVENUE CROSSING IN MERTZON	17346	1423A	14	8	LC	UC	RT	4	4	4	4												
SPRING CREEK S BANK 20 M DOWNSTREAM OF FM2335 NEAR TANKERSLEY	12161	1423A	14	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
DOVE CREEK AT BRIDGE SE BOUND ON FM2335 NEAR KNICKERBOCKER	12166	1423B	14	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year
MIDDLE CONCHO RIVER AT FM 853 NORTH OF MERTZON	16903	1424	14	8	LC	UC	RT	4 .	4	4	4												
SOUTH CONCHO RIVER 175 M DOWNSTREAM OF ANSON SPRING APPROXIMATELY 6.3 KM SOUTH OF CHRISTOVAL	18712	1424	14	8	LC	UC	RT	4	4		4												
SOUTH CONCHO RIVER IMMEDIATELY DOWNSTREAM OF	12427	1424	14	8	LC	UC	RT	4	4	4	4												Chlorophyll 4x year

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	A COUR	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
US 277 AT CHRISTOVAL																							
WEST ROCKY CREEK AT FM 853 43.4 KM/27 MI NORTHEAST OF MERTZON	12165	1424A	14	8	LC	UC	RT	4 4	L		4												
O C FISHER RESERVOIR MID LAKE 425 M WEST OF DAM RELEASE CONTROL TOWER	12429	1425	14	8	LC	UC	RT	2 2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
N CONCHO RIVER AT SHERWOOD LANE CROSSING 2.1MI SE OF STERLING CITY .75MI SOUTH OF SH87	16779	1425A	14	8	LC	UC	RT	4 4	1	4	4												
NORTH CONCHO RIVER 664 METERS UPSTREAM OF WILLOW CREEK CONFLUNCE 6.2MI NW OF STERLING CITY ON SH87.	16780	1425A	14	8	LC	UC	RT	4 4	ı		4												
NORTH CONCHO RIVER AT COUNTY ROAD BRIDGE 0.6 MILE SOUTHWEST OF CARLSBAD	12171	1425A	14	8	LC	UC	RT	4 4	l	4	4												Chlorophyll 4x year
NORTH CONCHO RIVER AT RR 2034	17350	1425A	14	8	LC	UC	RT	4 4	Į.	4	4												

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
SOUTHWEST OF WATER VALLEY																							
COLORADO RIVER AT BLAIR RANCH APPROX 0.75 KM DOWNSTREAM OF MUSTANG CREEK CONFLUENCE SOUTHEAST OF BALLINGER	17244	1426	14	3	LC	UC	RT	4 4	4		4												
COLORADO RIVER AT FM 2111 0.4 MI UPSTREAM FROM ROCKY CREEK 5.0 MI SW OF BALLINGER	13651	1426	14	3	LC	UC	RT	4 4	4	4	4												Chlorophyll 4x year
COLORADO RIVER AT FM3115 SOUTH OF MAVERICK	16901	1426	14	3	LC	UC	RT	4 4	4	4	4												
COLORADO RIVER USGS STATION IMMEDIATELY DOWNSTREAM OF SH 208 IN ROBERT LEE TEXAS	18338	1426	14	8	LC	UC	RT	4 4	4		4												
OAK CREEK RESERVOIR MID LAKE NEAR DAM OFF BONNER POINT AND WEST OFF RANCH RD 3399	12180	1426A	14	8	LC	UC	RT	2 2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
ELM CREEK AT BALLINGER CITY	12169	1426B	14	3	LC	UC	RT	4	4	4	4												Chlorophyll 4x year

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox Sed	Comments
PARK APPROX 71 M W TO CITY RD AND 120 M NE TO CROSSON RD UPSTREAM FROM STORAGE DAM																							
BLUFF CREEK AT RUNNELS CR 351/HATCHELL- EAGLE-BRANCH ROAD	17474	1426C	14	3	LC	UC	RT	4 4	4		4												
COYOTE CREEK AT RUNNELS CR 342 NORTH OF BALLINGER	16899	1426D	14	3	LC	UC	RT	4 4	4		4												
ONION CREEK AT FM 150 0.61 KM DOWNSTREAM OF FLAT CREEK CONFLUENCE	12451	1427	14	11	LC	AU	RT	3 3	3	3	3												
ONION CREEK AT US 183 SOUTHEAST OF AUSTIN	12436	1427	14	11	LC	LC	RT	6 6	6	6	6												
COLORADO RIVER AT COUNTY PARK IN WEBBERVILLE APPROX 334 METERS TO THE WEST OF WATER ROAD	12466	1428	14	11	LC	LC	RT	6 (6	6	6												
COLORADO RIVER AT FM 973 AT DEL VALLE	12469	1428	14	11	LC	LC	RT	6 6	6	6	6												

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
COLORADO RIVER BRIDGE ON US 183 SOUTHEAST OF AUSTIN/COLORADO RIVER ON LOCKHART BRIDGE NEXT TO US 183 BRIDGE	12474	1428	14	11	LC	LC	RT	6	6	6	6												
WALNUT CREEK AT SOUTHERN PACIFIC RR APPROXIMATELY 26 M DOWNSTREAM OF AUSTIN AND NORTHWESTERN 1.2 MILES SOUTH OF FM 969 IN EAST AUSTIN	12231	1428B	14	11	LC	AU	RT	1	1	1	1												
WALNUT CREEK IMMEDIATELY DOWNSTREAM OF LOOP 1/MOPAC EXPWY IN AUSTIN	17251	1428B	14	11	LC	AU	RT	4	4	4	4												Quarterly sampling for TMDL in conjunction with EII
GILLELAND CREEK APPROXIMATELY 20 M UPSTREAM OF GRAND AVENUE PARKWAY IN PFLUGERVILLE	18762	1428C	14	11	LC	LC	RT	6	6	6	6												
GILLELAND CREEK AT FM 973 SOUTH OF MANOR	12235	1428C	14	11	LC	AU	RT	1	1	1	1												for Gilleland TMDL Implementation Plan monitoring

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox Sed	Comments
GILLELAND CREEK AT US 290 NORTH OF MANOR	12236	1428C	14	11	LC	ΑU	RT	1	1	1	1												for Gilleland TMDL Implementation Plan monitoring
GILLELAND CREEK IMMEDIATELY DOWNSTREAM OF WEBBERVILLE ROAD/FM 969 EAST OF AUSTIN	17257	1428C	14	11	LC	LC	RT	6	6	6	6												
LADY BIRD LAKE AT LONGHORN DAM APPROXIMATELY 280 METERS SOUTH AND 250 METERS EAST OF INTERSECTION OF CANTERBURY STREET AND PEDERNALES STREET	12476	1429	14	11	LC	A U	RT	9	9	9								1	1				
SHOAL CREEK 15 M UPSTREAM OF NORTHLAND DRIVE/FM 2222 IMMEDIATEL WEST OF INTERSECTION NORTHLAND DRIVE AND SHOAL CREEK BLVD IN AUSTIN	17310	1429A	14	11	LC	A U	RT	1	1	1	1												
WALLER CREEK AT 24TH STREET ON UT	15962	1429C	14	11	LC	AU	RT	4	4	4	4												Added for TMDL

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox	Comments
CAMPUS IN AUSTIN																							J
WALLER CREEK AT 2ND STREET/RED RIVER STREET IN AUSTIN/TO THE NORTHWEST OF TOWNLAKE	12222	1429C	14	11	LC	AU	RT	4	4	4	4												Added for TMDL
WALLER CREEK AT AVENUE H AT THE ELISABET NEY MUSEUM	16331	1429C	14	11	LC	AU	RT	4	4	4	4												Added for TMDL
BARTON CREEK AT LOST CREEK BLVD	13555	1430	14	11	LC	AU	RT	1	1	1	1												
O H IVIE RESERVOIR IN COLORADO RIVER ARM AT ABILENE PUMP STATION	12513	1433	14	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
O H IVIE RESERVOIR IN CONCHO RIVER ARM AT FM 1929	12512	1433	14	8	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
O H IVIE RESERVOIR NEAR DAM	12511	1433	14	3	LC	UC	RT	2	2	2													Chlorophyll 2x year, UCRA Sample Q2 and Q4
COLORADO RIVER AT LOOP 150 SOUTH OF BASTROP	12462	1434	14	11	LC	LC	RT	6	6	6	6												
COLORADO RIVER AT SH 71 AT LA GRANGE	12292	1434	14	11	LC	LC	RT	6	6	6	6												

Site Description	Station ID	Waterbody ID	Basin	Region	SE	CE	MT	Field	Conv	Bacteria	Flow	24 hr DO	AqHab	Benthics	Nekton	Metal Water	Organic Water	Metal Sed	Organic Sed	Fish Tissue	Amb Tox Water	Amb Tox Sed	Comments
COLORADO RIVER DOWNSTREAM SH 95 1 MI AT OLIVE RD IN SMITHVILLE	12293	1434	14	11	LC	LC	RT	6	6	6	6												
LAKE BASTROP OFF TRIANGLE POINT OVER SPICER CREEK CHANNEL APPROX 185M EAST OF LANDMARK/TRIAN GLE POINT	17020	1434C	14	11	LC	LC	RT	6	6	6													
ALUM CREEK APPROX 200FT UPSTREAM OF PARK ROAD 1C EAST OF BASTROP STATE PARK	16188	1434G	14	11	LC	LC	RT	6	6	6	6												

Table B1.1 Sample Design and Schedule, FY 2022

Map Name	Station ID	Segment	Site Description	Monitoring Entity
Upper	12359	1411	E V SPENCE RESERVOIR APPROX 5.3 KM WEST OF STATE HIGHWAY 208	UCRA

Map Name	Station ID	Segment	Site Description	Monitoring Entity
Upper	13863	1411	E V SPENCE RESERVOIR AT DAM 1.75 KM WEST OF THE INTERSECTION OF FM 1904 AND ST LOOP 229	UCRA
Upper	12360	1411	E V SPENCE RESERVOIR FM 2059 BRIDGE NEAR SILVER	UCRA
Upper	17002	1412	COLORADO RIVER AT MITCHELL CR343/PECAN CROSSING 7.5KM WEST OF SH208 AND 25.0KM SOUTH OF COLORADO CITY AT IH20	UCRA
Upper	12156	1412B	BEALS CREEK 35 M DOWNSTREAM OF SH 163 APPROXIMATELY 11 MI SOUTH OF WESTBROOK	UCRA
Upper	21614	1413	LAKE J B THOMAS AT DAM APPROX 1.0 KM WEST OF THE INTERSECTION OF FM 1298 AND SCURRY CR 8	UCRA
Upper	17244	1426	COLORADO RIVER AT BLAIR RANCH APPROX 0.75 KM DOWNSTREAM OF MUSTANG CREEK CONFLUENCE SOUTHEAST OF BALLINGER	UCRA
Upper	13651	1426	COLORADO RIVER AT FM 2111 0.4 MI UPSTREAM FROM ROCKY CREEK 5.0 MI SW OF BALLINGER	UCRA
Upper	16901	1426	COLORADO RIVER AT FM3115 SOUTH OF MAVERICK	UCRA
Upper	18338	1426	COLORADO RIVER USGS STATION IMMEDIATELY DOWNSTREAM OF SH 208 IN ROBERT LEE TEXAS	UCRA
Upper	12180	1426A	OAK CREEK RESERVOIR MID LAKE NEAR DAM OFF BONNER POINT AND WEST OFF RANCH RD 3399	UCRA
Upper	12169	1426B	ELM CREEK AT BALLINGER CITY PARK APPROX 71 M W TO CITY RD AND 120 M NE TO CROSSON RD UPSTREAM FROM STORAGE DAM	UCRA
Upper	17474	1426C	BLUFF CREEK AT RUNNELS CR 351/HATCHELL-EAGLE-BRANCH ROAD	UCRA
Upper	16899	1426D	COYOTE CREEK AT RUNNELS CR 342 NORTH OF BALLINGER	UCRA
Upper	12513	1433	O H IVIE RESERVOIR IN COLORADO RIVER ARM AT ABILENE PUMP STATION	UCRA
Concho	12409	1421	CONCHO RIVER 235 M DOWNSTREAM OF S BELL ST AND 540 M DOWNSTREAM FROM CONFLUENCE OF NORTH AND SOUTH FORKS IN SAN ANGELO	UCRA
Concho	12403	1421	CONCHO RIVER AT FM1692 SOUTH OF MILES	UCRA
Concho	12407	1421	CONCHO RIVER AT FM380 NEAR VERIBEST	UCRA

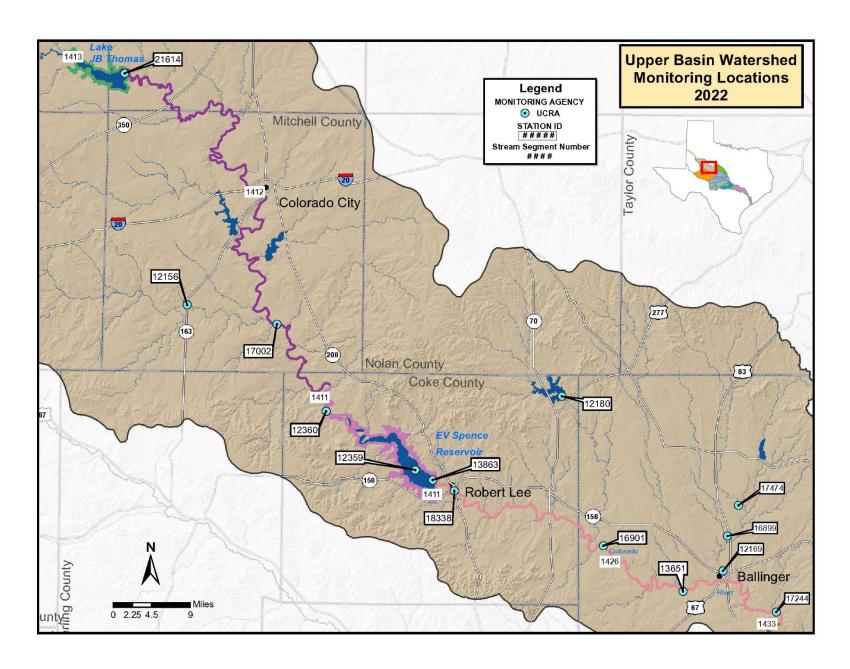
Map Name	Station ID	Segment	Site Description	Monitoring Entity
Concho	12402	1421	CONCHO RIVER AT FM381	UCRA
Concho	12401	1421	CONCHO RIVER BRIDGE ON US83 AT PAINT ROCK	UCRA
Concho	12416	1421	CONCHO RIVER SOUTH FORK AT US87	UCRA
Concho	12412	1421	NORTH CONCHO RIVER 20M UPSTREAM OF IRVING STREET DAM IN SAN ANGELO TOM GREEN COUNTYTEXAS	UCRA
Concho	15886	1421	NORTH CONCHO RIVER AT CADDO ST IN SAN ANGELO	UCRA
Concho	12418	1422	LAKE NASWORTHY 40 M WEST OF DAM CENTERPOINT APPROX 1.3 KM TO THE NORTH OF COUNTRY CLUB RD	UCRA
Concho	12419	1422	LAKE NASWORTHY IN RIVER CHANNEL IN SOUTH CONCHO ARM 880 M WEST AND 220 M NORTH OF SOUTH COUNTRY CLUB ROAD AT LAS LOMAS COURT	UCRA
Concho	12421	1422	LAKE NASWORTHY MIDDLE COVE 120 M DOWNSTREAM OF CENTER POINT OF CONFLUENCE OF MIDDLE CONCHO AND SPRING CREEK CHANNELS	UCRA
Concho	12422	1423	TWIN BUTTES RESERVOIR AT DAM 695 M SOUTH AND 195 M WEST OF INTAKE STRUCTURE TO LAKE NASWORTHY	UCRA
Concho	12425	1423	TWIN BUTTES RESERVOIR SOUTH POOL RIVER CHANNEL NEAR DAM APPROX 21 METERS TO THE WEST OF MOTL DAM	UCRA
Concho	16903	1424	MIDDLE CONCHO RIVER AT FM 853 NORTH OF MERTZON	UCRA
Concho	18712	1424	SOUTH CONCHO RIVER 175 M DOWNSTREAM OF ANSON SPRING APPROXIMATELY 6.3 KM SOUTH OF CHRISTOVAL	UCRA
Concho	12427	1424	SOUTH CONCHO RIVER IMMEDIATELY DOWNSTREAM OF US 277 AT CHRISTOVAL	UCRA
Concho	12429	1425	O C FISHER RESERVOIR MID LAKE 425 M WEST OF DAM RELEASE CONTROL TOWER	UCRA
Concho	12512	1433	O H IVIE RESERVOIR IN CONCHO RIVER ARM AT FM 1929	UCRA
Concho	12511	1433	O H IVIE RESERVOIR NEAR DAM	UCRA
Concho	12257	1421A	DRY HOLLOW CREEK AT HEADWATERS OF CHANDLER LAKE APPROXIMATELY 484 M TO THE EAST OF PRIVATE ROAD 1775	UCRA

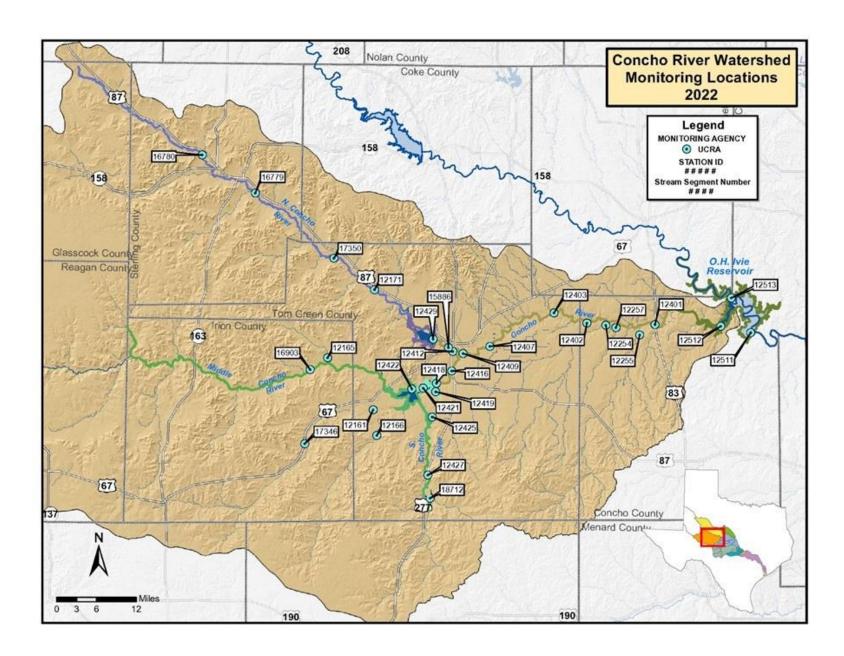
Map Name	Station ID	Segment	Site Description	Monitoring Entity
Concho	12255	1421B	KICKAPOO CREEK AT FM 380	UCRA
Concho	12254	1421C	LIPAN CREEK APPROX 900M UPSTREAM OF THE CONFLUENCE OF THE CONCHO RIVER ON PRIVATE PROPERTY	UCRA
Concho	17346	1423A	SPRING CREEK AT LAKE AVENUE CROSSING IN MERTZON	UCRA
Concho	12161	1423A	SPRING CREEK S BANK 20 M DOWNSTREAM OF FM2335 NEAR TANKERSLEY	UCRA
Concho	12166	1423B	DOVE CREEK AT BRIDGE SE BOUND ON FM2335 NEAR KNICKERBOCKER	UCRA
Concho	12165	1424A	WEST ROCKY CREEK AT FM 853 43.4 KM/27 MI NORTHEAST OF MERTZON	UCRA
Concho	16779	1425A	N CONCHO RIVER AT SHERWOOD LANE CROSSING 2.1MI SE OF STERLING CITY .75MI SOUTH OF SH87	UCRA
Concho	16780	1425A	NORTH CONCHO RIVER 664 METERS UPSTREAM OF WILLOW CREEK CONFLUNCE 6.2MI NW OF STERLING CITY ON SH87.	UCRA
Concho	12171	1425A	NORTH CONCHO RIVER AT COUNTY ROAD BRIDGE 0.6 MILE SOUTHWEST OF CARLSBAD	UCRA
Concho	17350	1425A	NORTH CONCHO RIVER AT RR 2034 SOUTHWEST OF WATER VALLEY	UCRA
Pecan Bayou	12394	1417	LOWER PECAN BAYOU AT FM 573 SOUTHWEST OF MULLIN	LCRA
Buchanan	12349	1408	LAKE BUCHANAN AT CONFLUENCE OF COUNCIL AND MORGAN CREEKS APPROX 302 METERS SOUTH OF LAKESHORE RD	LCRA
Buchanan	12347	1408	LAKE BUCHANAN AT ROCKY POINT APPROX 1.3.KM NORTHWEST OF ROCKY RIDGE	LCRA
Buchanan	12352	1408	LAKE BUCHANAN NEAR BEAVER CREEK COVE ADJACENT TO PARADISE POINT APPROX 1.4 KM TO THE SOUTH OF RANCH ROAD 2341	LCRA
Buchanan	12344	1408	LAKE BUCHANAN NEAR BUCHANAN DAM APPROX 475 METERS TO THE WEST OF CORONADO RD	LCRA
Buchanan	12353	1408	LAKE BUCHANAN NEAR LAKE HEADWATER APPROX 687 METERS TO THE NORTHEAST OF LLANO TOW VALLEY RD	LCRA
Buchanan	12355	1409	COLORADO RIVER AT US 190 EAST OF SAN SABA	LCRA
Buchanan	12274	1409A	CHEROKEE CREEK AT FM 501 5 MILES WEST OF BEND	LCRA

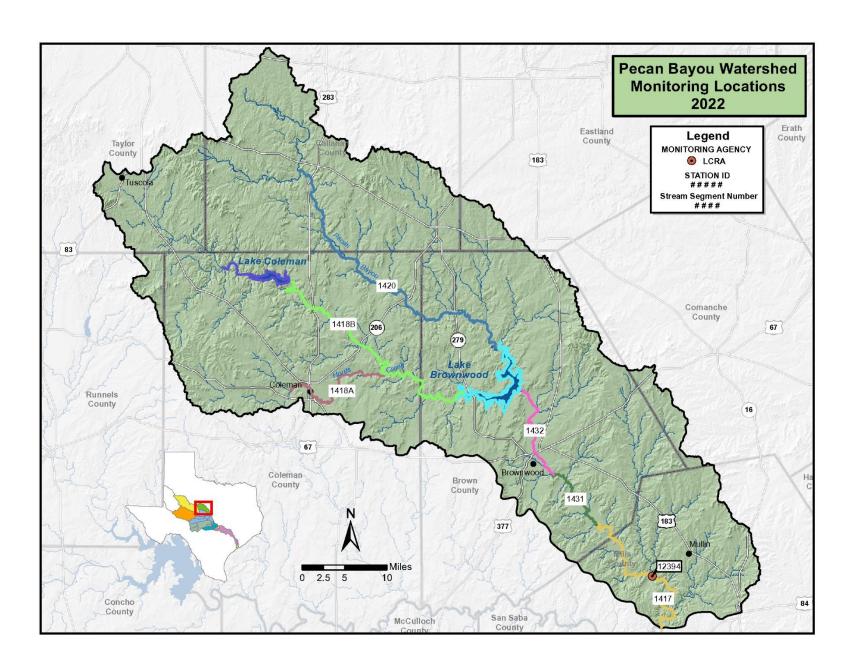
Map Name	Station ID	Segment	Site Description	Monitoring Entity
Buchanan	12358	1410	COLORADO RIVER BRIDGE ON US 377 AT WINCHELL	LCRA
Buchanan	12392	1416	SAN SABA RIVER AT SH 16 NORTH OF SAN SABA	LCRA
Buchanan	17004	1416	SAN SABA RIVER IMMEDIATELY DOWNSTREAM OF US87	LCRA
Buchanan	14232	1416A	BRADY CREEK 2.81 KM DOWNSTREAM OF RR 714	UCRA
Buchanan	12179	1416B	BRADY CREEK RESERVOIR MID LAKE NEAR DAM/SOUTHEAST BOUND OFF RANCH ROAD 3022	UCRA
LBJ	12330	1406	LAKE LYNDON B JOHNSON AT CONFLUENCE WITH LLANO RIVER ARM NEAR KINGSLAND APPROX 51 METERS TO THE SOUTHWEST OF SCENIC RD	LCRA
LBJ	12327	1406	LAKE LYNDON B JOHNSON AT CONFLUENCE WITH SANDY CREEK APPROX 453 METERS TO THE NORTH OF BLUE MOUNTAIN RD	LCRA
LBJ	12324	1406	LAKE LYNDON B JOHNSON NEAR ALVIN WIRTZ DAM APPROX 658 METERS NORTH OF FM 2147	LCRA
LBJ	12214	1406A	SANDY CREEK APPROXIMATELY 73 M DOWNSTREAM OF SH 71 SOUTH OF KINGSLAND	LCRA
LBJ	12336	1407	INKS LAKE NEAR INKS DAM APPROX 161 METERS TO THE NORTHEAST OF ROY INKS DAM	LCRA
LBJ	18710	1407A	CLEAR CREEK 1.28 KM UPSTREAM OF SH 29	LCRA
LBJ	12386	1415	LLANO RIVER 0.4 MILE DOWNSTREAM FROM BRIDGE ON SH 16 AT LLANO	LCRA
LBJ	14231	1415	LLANO RIVER AT YATES CROSSING ON RR 385 15 MI EAST OF JUNCTION IN KIMBLE COUNTY	LCRA
LBJ	12383	1415	LLANO RIVER COUNTY ROAD $6.5\mathrm{MILES}$ UPSTREAM FROM KINGSLAND/LLANO RIVER AT RANCH ROAD 3404	LCRA
LBJ	21548	1415	NORTH LLANO RIVER 75 METERS UPSTREAM OF US 377 IN JUNCTION	LCRA
LBJ	18197	1415	SOUTH LLANO RIVER APPROXIMATELY 10 MI UPSTREAM OF SOUTH LLANO RIVER STATE PARK 204 YD UPSTREAM OF SECOND US 377 CROSSING	LCRA

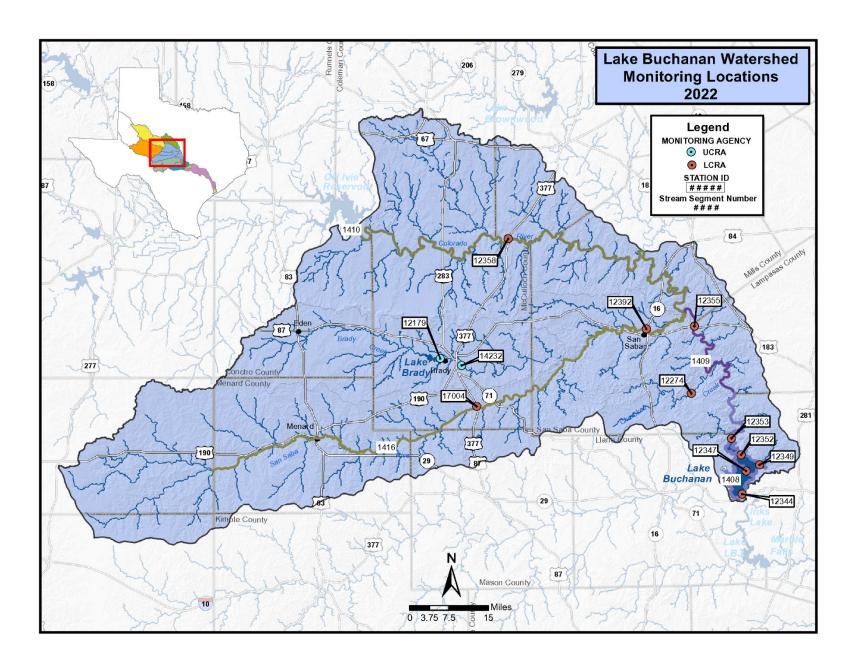
Map Name	Station ID	Segment	Site Description	Monitoring Entity
LBJ	21812	1415A	JOHNSON FORK CREEK 10 METERS UPSTREAM OF KIMBLE CR 410 SOUTHEAST OF JUNCTION	LCRA
LBJ	12210	1415C	JAMES RIVER/AT JAMES RIVER RD AT UPPER MASON COUNTY ROAD CROSSING 14 MILES SOUTHWEST OF MASON	LCRA
Travis	12309	1404	LAKE TRAVIS AT ARKANSAS BEND TO THE WEST OF RANCH ROAD 620	LCRA
Travis	20070	1404	LAKE TRAVIS IN BEE CREEK COVE 191 M NORTH AND 443 M WEST OF THE INTERSECTION OF BEE CREEK ROAD AND CORY LANE	LCRA
Travis	12307	1404	LAKE TRAVIS IN BIG SANDY CREEK COVE 1.25 KM DOWNSTREAM OF THE CONFLUENCE WITH LIME CREEK/BRUSHY CREEK 140 M SE OF THE END OF TRAIL END RD AND 1.4 KM WEST OF FM 973	LCRA
Travis	15428	1404	LAKE TRAVIS IN THE HURST CREEK ARM APPROX 200 YDS UPSTREAM OF HURST HARBOR NEAR LADIN LANE IN LAKEWAY SUBDIVISION	LCRA
Travis	12313	1404	LAKE TRAVIS MID LAKE AT CONFLUENCE WITH COW CREEK ARM AT PACE BEND APPROXIMATELY 2.02 KILOMETERS TO THE SOUTH OF FM 1431	LCRA
Travis	12302	1404	LAKE TRAVIS NEAR DAM AT LCRA TRAVIS COUNTY PARK	LCRA
Travis	12316	1404	LAKE TRAVIS NEAR SPICEWOOD EAST OF SHAW RD AND NORTH OF MULE SHOE BEND RD	LCRA
Travis	12319	1405	LAKE MARBLE FALLS NEAR MAX STARCKE DAM/TO SOUTHEAST OF COMINO REAL RD	LCRA
Travis	12369	1414	PEDERNALES RIVER AT CR 962 AT HAMMETT'S CROSSING APPROX 532 METERS TO THE EAST OF HAMMETS ROAD	LCRA
Travis	12375	1414	PEDERNALES RIVER AT FM 1320	LCRA
Travis	12377	1414	PEDERNALES RIVER AT GOEHMAN LANE CROSSING EAST OF FREDRICKSBURG OFF OF US 290 E APPROX 1.5 KM TO THE NORTH OF US HWY290	LCRA
Travis	17472	1414	PEDERNALES RIVER AT US 87 APPROX 3.0 MILES SOUTH OF FREDERICKSBURG	LCRA

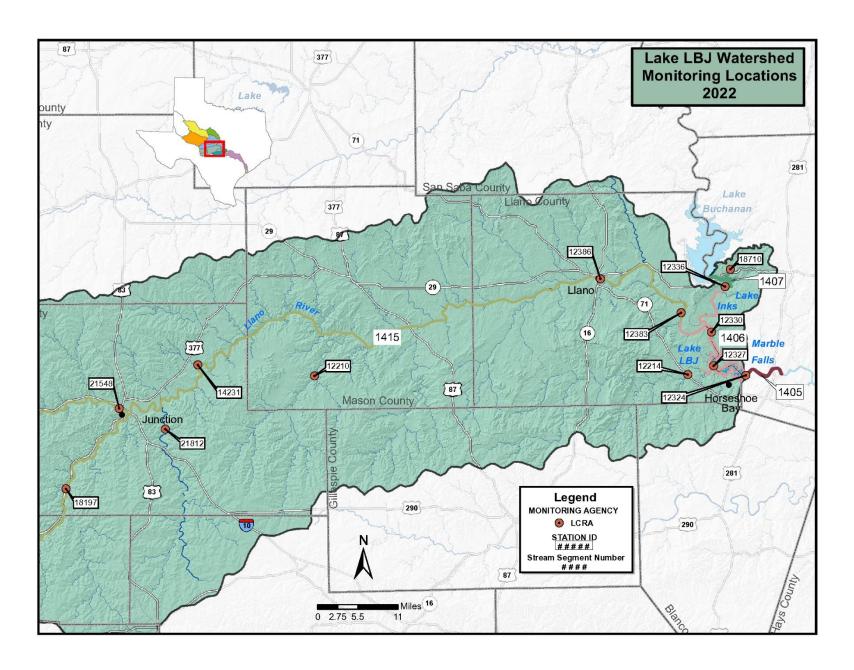
Map Name	Station ID	Segment	Site Description	Monitoring Entity
Travis	21398	1414	PEDERNALES RIVER 20 METERS UPSTREAM OF PEDERNALES HILLS ROAD	LCRA
Austin	12297	1403	LAKE AUSTIN NEAR METROPOLITAN PARK TO THE SOUTH OF CITY PARK RD AND TO THE EAST OF WESTON RD	LCRA/COA
Austin	12294	1403	LAKE AUSTIN NEAR TOM MILLER DAM TO THE WEST OF LAKE AUSTIN BLVD	LCRA/COA
Austin	12216	1403A	BULL CREEK AT LOOP 360 1 MILE NORTH OF FM 2222 INTERSECTION WEST OF AUSTIN	COA
Austin	12218	1403A	BULL CREEK AT SPICEWOOD SPRINGS RD 5TH CROSSING TO THE WEST OF YUCCA MOUNTAIN RD	COA
Austin	16316	1403J	SPICEWOOD TRIBUTARY OF SHOAL CREEK APPROX 13 METERS DOWNSTREAM OF CEBERRY DR IN AUSTIN	COA
Austin	17294	1403K	TAYLOR SLOUGH SOUTH 20 M DOWNSTREAM OF PECOS STREET SOUTH OF RIVER ROAD IN AUSTIN	COA
Austin	12451	1427	ONION CREEK AT FM 150 0.61 KM DOWNSTREAM OF FLAT CREEK CONFLUENCE	COA
Austin	12436	1427	ONION CREEK AT US 183 SOUTHEAST OF AUSTIN	LCRA
Austin	18762	1428	GILLELAND CREEK APPROXIMATELY 20 M UPSTREAM OF GRAND AVENUE PARKWAY IN PFUGERVILLE	LCRA
Austin	12469	1428	COLORADO RIVER AT FM 973 AT DEL VALLE	LCRA
Austin	12474	1428	COLORADO RIVER BRIDGE ON US 183 SOUTHEAST OF AUSTIN/COLORADO RIVER ON LOCKHART BRIDGE NEXT TO US 183 BRIDGE	LCRA
Austin	12231	1428B	WALNUT CREEK AT SOUTHERN PACIFIC RR APPROXIMATELY 26 M DOWNSTREAM OF AUSTIN AND NORTHWESTERN 1.2 MILES SOUTH OF FM 969 IN EAST AUSTIN	COA

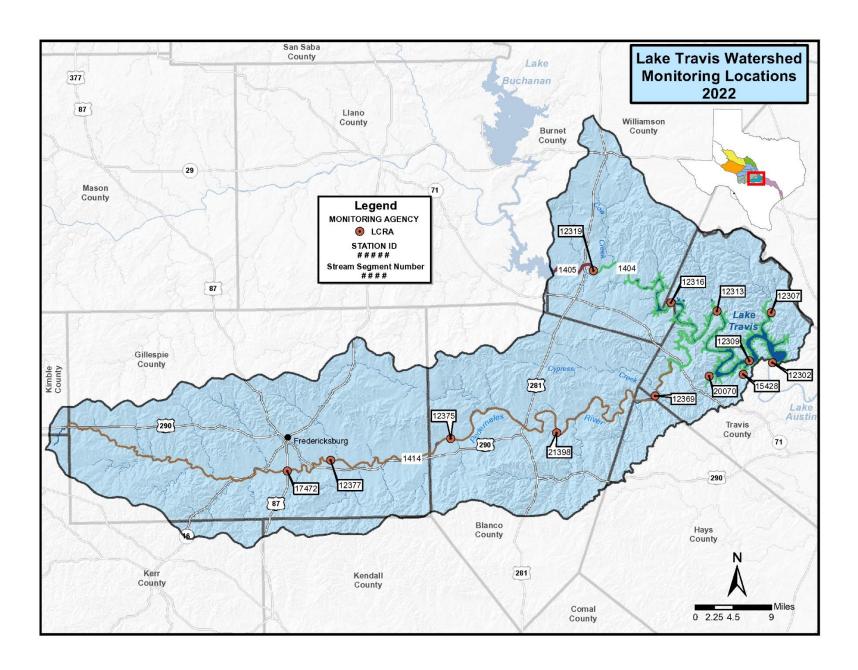

Map Name	Station ID	Segment	Site Description	Monitoring Entity
Austin	17251	1428B	WALNUT CREEK IMMEDIATELY DOWNSTREAM OF LOOP 1/MOPAC EXPWY IN AUSTIN	COA
Austin	12476	1429	LADY BIRD LAKE AT LONGHORN DAM APPROXIMATELY 280 METERS SOUTH AND 250 METERS EAST OF INTERSECTION OF CANTERBURY STREET AND PEDERNALES STREET	COA
Austin	17310	1429A	SHOAL CREEK 15 M UPSTREAM OF NORTHLAND DRIVE/FM 2222 IMMEDIATELY WEST OF INTERSECTION NORTHLAND DRIVE AND SHOAL CREEK BLVD IN AUSTIN	COA
Austin	15962	1429C	WALLER CREEK AT 24TH STREET ON UT CAMPUS IN AUSTIN	COA
Austin	12222	1429C	WALLER CREEK AT 2ND STREET/RED RIVER STREET IN AUSTIN/TO THE NORTHWEST OF TOWNLAKE	COA
Austin	16331	1429C	WALLER CREEK AT AVENUE H AT THE ELISABET NEY MUSEUM	COA
Austin	13555	1430	BARTON CREEK AT LOST CREEK BLVD	COA
Lower	17053	1402	BUCKNERS CREEK AT FAYETTE CR137/COUNTRY CLUB ROAD SW OF LA GRANGE	LCRA
Lower	12290	1402	COLORADO RIVER AT OLD HWY 71 IN COLUMBUS	LCRA
Lower	21809	1402	COLORADO RIVER 20 METERS UPSTREAM OF FM 960 NEAR GLEN FLORA	LCRA
Lower	18351	1402	COLORADO RIVER APPROXIMATELY 15 M OFF EAST BANK IMMEDIATELY DOWNSTREAM OF US ALT 90 NEAR ALTAIR	LCRA
Lower	12286	1402	COLORADO RIVER APPROXIMATELY 367 METERS DOWNSTREAM OF SH 183 IN WHARTON	LCRA
Lower	21808	1402	COLORADO RIVER AT PECAN VALLEY ROAD BOAT RAMP 290 METERS NORTH AND 50 METERS EAST OF THE INTERSECTION OF PECAN VALLEY ROAD AND NELSON ROAD / WHARTON CR 167	LCRA

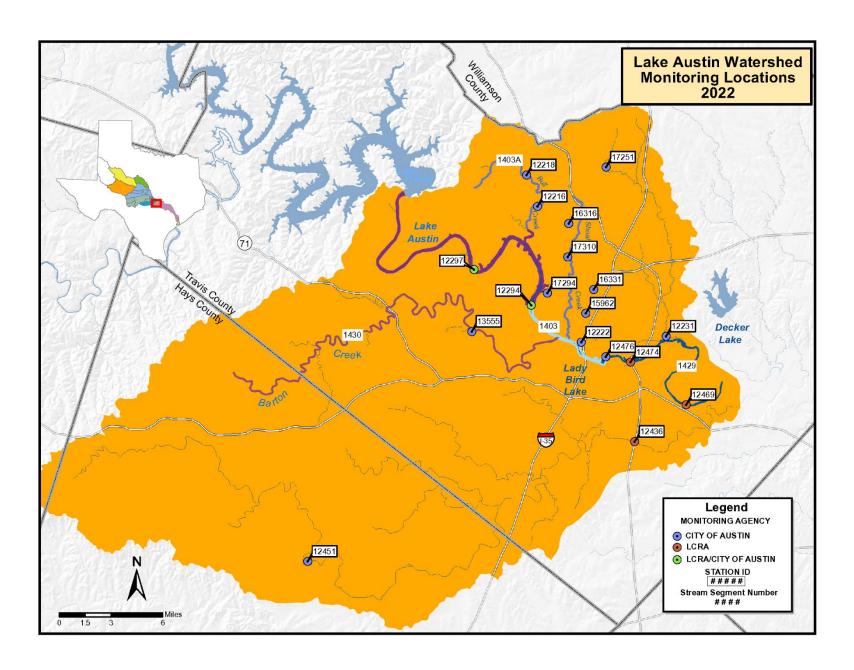

Map Name	Station ID	Segment	Site Description	Monitoring Entity
Lower	12284	1402	COLORADO RIVER AT SH 35 BRIDGE AT BAY CITY	LCRA
Lower	17017	1402G	FAYETTE RESERVOIR AT THE MID POINT OF THE LAKE OVER CEDAR CREEK CHANNEL APPROX 150 YDS NORTH OF THE BAFFLE DIKE	LCRA
Lower	12466	1428	COLORADO RIVER AT COUNTY PARK IN WEBBERVILLE APPROX 334 METERS TO THE WEST OF WATER ROAD	LCRA
Lower	12235	1428C	GILLELAND CREEK AT FM 973 SOUTH OF MANOR	COA
Lower	12236	1428C	GILLELAND CREEK AT US 290 NORTH OF MANOR	COA
Lower	17257	1428C	GILLELAND CREEK IMMEDIATELY DOWNSTREAM OF WEBBERVILLE ROAD/FM 969 EAST OF AUSTIN	LCRA
Lower	16188	1434	ALUM CREEK APPROX 200FT UPSTREAM OF PARK ROAD 1C EAST OF BASTROP STATE PARK	LCRA
Lower	12462	1434	COLORADO RIVER AT LOOP 150 SOUTH OF BASTROP	LCRA
Lower	12292	1434	COLORADO RIVER AT SH 71 AT LA GRANGE	LCRA
Lower	12293	1434	COLORADO RIVER DOWNSTREAM SH 95 1 MI AT OLIVE RD IN SMITHVILLE	LCRA
Lower	17020	1434C	LAKE BASTROP OFF TRIANGLE POINT OVER SPICER CREEK CHANNEL APPROX 185M EAST OF LANDMARK/TRIANGLE POINT	LCRA
Coastal	12281	1401	COLORADO RIVER TIDAL AT SELKIRK ISLAND 2 MI DOWNSTREAM FROM FM 521 SW OF WADSWORTH	LCRA

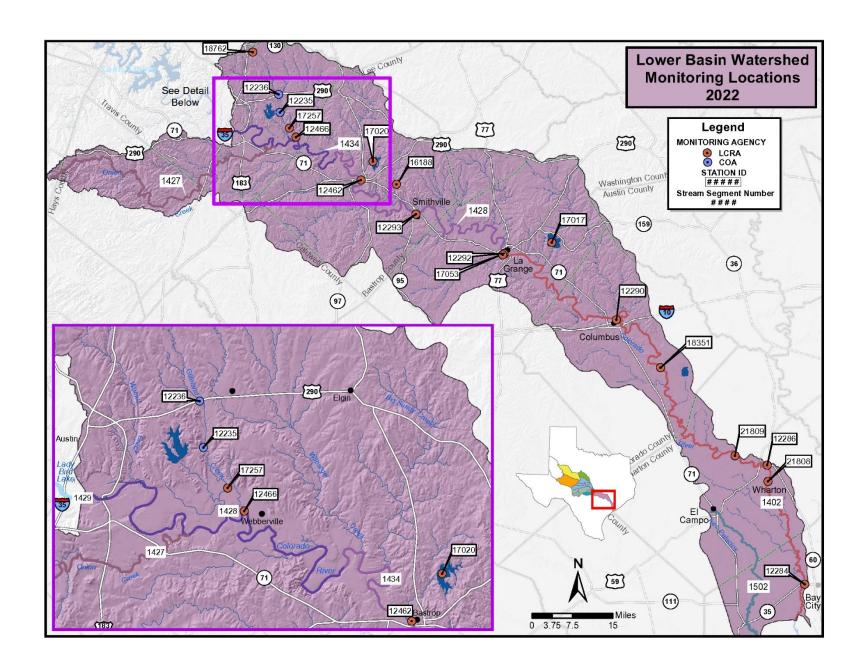

Appendix C: Station Location Maps

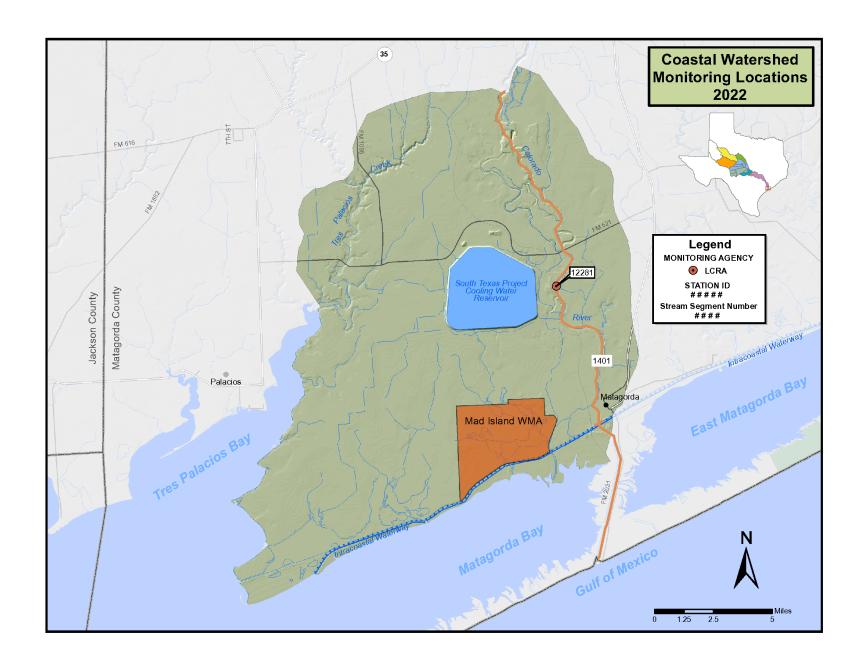

Station Location Maps

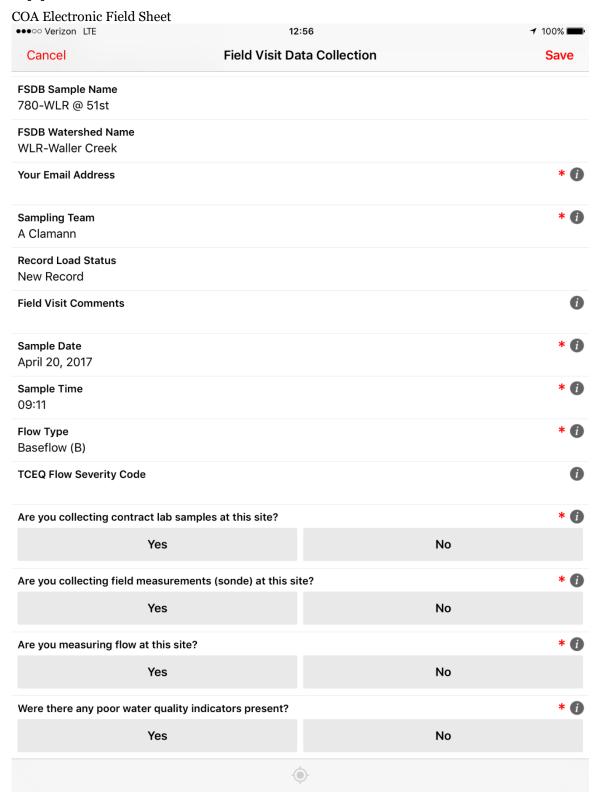

Maps of stations monitored by LCRA, COA and UCRA are provided below. The maps were generated by the LCRA. This product is for informational purposes and may not have been prepared for or be suitable for legal, engineering, or surveying purposes. It does not represent an on-the-ground survey and represents only the approximate relative location of property boundaries. For more information concerning this map, contact the LCRA CRP Project Manager at (512) 578-2151.











Appendix D: Field Data Sheets

Database No.:

WPD FIELD DATA SHEET

	E 🗀	Рζ	3	F 🗀	
Date:					
Ву:					
	Ref. No:				
ect#:					
ershed:					
k Split	Duplicate				

. Site Name	-		_		Project #:		
Date	-		_		Watershed:		
Time	:		_		Blank, Split,	Duplicate	
Personnel	:		_				
Current Weather			_		QC Name:		
Antecedent Weather:			_		Batch ID:		
Days Since Sign. Rain (>0.1"):		_		FEWS Gaug	ge / Other:	
Flow Type: Baseflow Flow Severity: None (p							
Sample Type: Grab, Gra				Surface Wate			Soil, Other
Field Parameters:			ation Values			1	
		Initial	True	Initial	True		Sonde #
Dissolved Oxygen	mg/L / % Sat						
Water Temp.	°C °F		T	T			
	Std.Units		7		10		Sonde QC Batch ID #
Conductivity	μS/cm		0				
low	cfs	pH ±0.5 s.u.	SPCond 5%	Dissolved Oxy	gen ±0.5 mg/L		
Depth	ft or m						24 hr D.O. Sonde #
	onde, Hydrolab-Da				Other		24 hr D.O. Sonde #
Method: Hydrolab-MiniSo Flow: Estimate, Marsh	onde, Hydrolab-Da	ured w/ bottle, I	USGS gauge ₋		Other		24 hr D.O. Sonde #
Method: Hydrolab-MiniSe Flow: Estimate, Marsh Photos	onde, Hydrolab-Da	Densiomete	USGS gauge ₋		Other		24 hr D.O. Sonde #
Method: Hydrolab-MiniSe Flow: Estimate, Marsh Photos RBLB	onde, Hydrolab-Da	ured w/ bottle, I	USGS gauge ₋				24 hr D.O. Sonde #
Method: Hydrolab-MiniSe Flow: Estimate, Marsh Photos RBLB	onde, Hydrolab-Da	Densiomete	USGS gauge ₋				24 hr D.O. Sonde #

Calibration Notes:

LCRA Electronic Field Sheet

7/3/2019 Sample: Q1941588001 HORIZON. Lab ID: Q1941588001 Sample ID: 20070 Actions 💌 Save Undo Chain of custody Matrix Aqueous Work In Progress HSN 1282045 Sample Information Tasks Results Sample Information Sample ID: * 20070 Select... Matrix: * Aqueous (AQ) Description: Sample type: * Paying sample (SAMPLE) Test reason: Select... Original ID: Select... ▼ BILLABLE TESTS Delete 2320-AM - Alkalinity by SM2320B Aqueous 07/02/2019 2540-AMTSS - TSS by SM2540D Aq 07/02/2019 07/02/2019 350.1AM - E350.1 Ammonia Aqueous 365.4AM - E365.4, TP, Aqueous, mg/L 07/02/2019 351,2AM - E351,2, TKN, Aqueous, mg/L 07/02/2019 445.0AM - E445.0 Chlorophyll/Pheophylin 07/02/2019 300.0AM-28 - EPA 300.0 Aq 07/02/2019 4500-AM-NN - SM4500-NO3-H, Nitrate/Nitrite 07/02/2019 9223-A-30 - E-Coli IDEXX SM9223B 30H 07/02/2019 Fld_FP - Field FPs 07/02/2019 F-Turb - Turbidity, Field 07/02/2019 Fld_FldSt - Field - Field Sheet 07/02/2019 07/03/2019 CLIENT INFORMATION Client: LCRA (LCRA) COLLECTION Collected: 07/02/2019 08:55 w16lcraprod.chemwarems.lcra.org/SampleDetail/Edit/1282045 1/2

RESERVOIR AND STREAM FIELD DATA SHEET

	Ir e parameter): lected By:	nstrument			Run ID:	RSS LTravis	S Turbidity Unit: Work Order #: Not Within Specifications (Fill i									
Time	Station Location	Sample Depth (m)	Secc hi (m)	Flow * (cfs)	Flow** Severit y	Present*** Weather	Wind **** Intensity	Macrophyte Bed (%)	Notes (site/watershed conditions that could impact water quality, biological conditions, etc)							
	12302 Travis Res @ Dam															
	12307 Sandy/Lime															
	12309 Arkansas Bend															
	12311 Anderson Bend															
	15428 Hurst Ck. Cove															

** Flow Severity: 1= No Flow 2= Low Flow 3- Normal Flow 4= Flood Flow 5= High Flow 6 = Dry

Present Weather: 1= Clear 2= Partly Cloudy 3= Cloudy 4= Rain

**** Wind Intensity: 1= Calm (<5mph) 2= Slight (5-10mph) 3= Moderate (10-15mph) 4= Strong (>15mph)

^{*} Use feet ASL at headwaters and dam sites

UCRA Field Data Sheet for Flow Measurements (all other data is recorded in a waterproof field notebook)

Flow Measurement Field Notes

River F	Run			Pers.								
Site ID	/Loc			Date								
Time E	Begin:			Time	End:							
Measu	rement D	epth: 60	0% 20%	80	%							
140000				reason.	V 6 - 1	C	Valasia.					
Int.	X-Sect.	x-Sect.	Velocity	Int.	X-Sect.	x-Sect.	Velocity					
#	width ft	depth ft	(ft./sec)	#	width ft	depth ft	(ft./sec)					
1				30								
2				31								
3				32								
4				33								
5				34								
6				35								
7				36								
8				37								
9				38								
10				39								
11				40								
12				41								
13				42								
14				43								
15				44								
16				45								
17				46								
18				47								
19				48								
20				49								
21				50								
22				51								
23				52								
24				53								
25				54								
26				55								
27				56								
28				57								
29				58								

Appendix E: Chain of Custody Forms

COA Chain of Custody for DHL

			15								
			· Cit	y of Au	stin - E			source Mana dy Form	gement Division	16071	Page <u>1</u> of .
Customer: Cit	y of Austin - WPDR		Progra	ım: Er	vironman	tal integrity inde	ex (EB)	Contract L		Collected By:	T Jackson
	Phase 2 Sediment			nt No: Si			- (Lii)	Micro Lot		1	, , , , , , , , , , , , , , , , , , , ,
	bert Glayton (512) 9	74-2550	EDD t				gov, andr	ew.clamann@aust	intexas.gov	Report to:	Andrew Clamann
Laboratory No Lab Use Only	Sample Identific	entification						quested			
01	(C) (C) (D) (C) (D) (C) (D) (D) (D) (D) (D) (D) (D) (D) (D) (D										
07	1097-RAT @ Shad	owbrook	07/06/2016	14:00	5 5	1 / 1L G	С	F1	TPH 1005, PAH 8270, 8081 PEST, 8082 I As,Cd,Cu,Pb,Zn,Hg,Fe,Ag,Ni,Cr,NH3, Te	PCB, % Moist,	
03	1221-TRK @ City F	Pk	07/06/2016	20:30) S	1 / 1L G	С	F1	TPH 1005, PAH 8270, 8081 PEST, 8082 PAS, Cd, Cu, Pb, Zn, Hg, Fe, Ag, Ni, Cr, NH3, Te	PCB, % Moist,	
94	1223-PAN @ Big V	lew	07/06/2016	20:05	S	1 / 1L G	С	F1	TPH 1005, PAH 8270, 8081 PEST, 8082 I As,Cd,Cu,Pb,Zn,Hg,Fe,Ag,Ni,Cr,NH3, Te	PCB, % Maist, xture, TOC	
05	1224-BRW @ Fritz	Hughes	07/06/2016	19:500	5 s	1 / 1L G	С	. F1	TPH 1005, PAH 8270, 8081 PEST, 8082 P As,Cd,Cu,Pb,Zn,Hg,Fe,Ag,Ni,Cr,NH3, Te	xture, TOC	
OCE	316-RDR @ Runnir Trl	ng Deer	07/06/2016	18:30	8	1 / 1L G	С	F1	TPH 1005, PAH 8270, 8081 PEST, 8082 F As,Cd,Cu,Pb,Zn,Hg,Fe,Ag,Ni,Cr,NH3, Te	xture, TOC	
07	13556-BSY @ Nam	eless Rd	07/06/2016	15:30) S	1 / 1L G	С	F1	TPH 1005, PAH 8270, 8081 PEST, 8082 I As,Cd,Cu,Pb,Zn,Hg,Fe,Ag,Ni,Cr,NH3, Te	xture, TOC	
08	13557-CWC @ Sin		07/06/2016	16:15	s	1 / 1L G	С	F1	TPH 1005, PAH 8270, 8081 PEST, 8082 F As,Cd,Cu,Pb,Zn,Hg,Fe,Ag,NI,Cr,NH3, Te	xture, TOC	
09	13559-LCK W @ Pe Canyon Dr			17:25	s	1 / 1L G	С	F1	TPH 1005, PAH 8270, 8081 PEST, 8082 P As,Cd,Cu,Pb,Zn,Hg,Fe,Ag,Nl,Cr,NH3, Te	xture, TOC	
10	13560-LCK E @ Pe Canyon Dr	demales	07/06/2016	17:40	s	1 / 1L G	С	F1	TPH 1005, PAH 8270, 8081 PEST, 8082 F As,Cd,Cu,Pb,Zn,Hg,Fe,Ag,Ni,Cr,NH3, Te		
								. L			
					-						
			-								
Customer Com	ments;	e or preser	vation requirem	ents, initia	l to author	ize analysis:		Labora on ice	atory Comments:		Received
Date	/ Time:		Relingui	shed by:		Re	ceived b	v: '	icec temp 2.3,	1.11.6	,20
07/11/160	100 11:00	710	odd J	nckso	<u> </u>		Wier		2/ un #78		
7/11/14	1324		Cai	rui		93	Jula		Rec temp 2.5, 2km #78 Custody seeks	Wacf	
Environmental S H - Hazardous/C	Contaminated				Class 5	(4) HCI to	opH<2 (5	i) Na2S2O3 (6) Na	: (1) cool to 4C (2) H2SO4 to pH<2 (3) HNO3 OH to pH>12 (7) None required (8) M3 (9) No fype: AC - Autosampler Composite, G - Grab, 4	to pH<2 iHSO4 (10) Noted	
Container: L - L 40mL vial C - C	iter mL - milliter P ubitaner	- Piesuc G	- Clear Glass	AG - Ambe	or Glass E	- Dacii we Wh	m Pak V	JA - Sample	ype. Ac - Autosampler Composite, G - Grab, C	o - Composite Gra	,
Revision: May (86, 2014 To request c	hanges/up	dates on this do	cument: r	obert, clayt	on@austintexas.	gov	2			

ELS Chain of Custody form for LCRA and UCRA

LCRA Environmental Laboratory Services Request for Analysis Chain-of-Custody Record

Phone: (512) 730-6022 or 1-800-776-5272 LCRA - Environmental Lab 3505 Montopolis Dr. Fax: (512) 356-6021 *8664* Lab ID#: Austin, TX 78744 https://els.lcra.org Client PO: RSS Lower Travis Dave Bass LCRA WQP L-106 Lisa Benton LCRA 9-416 Project: Client: LCRA Collector: Contact: Jason Woods Event#: 1440462 / 8664 Phone: (512)730-5339

				Matrix*		Co	ntaine	F(8) T	ype/P	resen	vative	/Num	ber*				F	teque	ested	Anal	ysls	•			\neg
I USE ONLY		Colle	Collected * S = DW Water		POSITE Y'N	TERED Y/N	250PHSC4	nan	25STERL	יי				MA-AIM	2AM	-AMTSS	FId_FId3t	350.1AM	4500-AM-NN	4	445.UAM	300.0AM-28	365.4AM	-A-30	e
3	Sample ID *	Date*	Time + HH:MM		COM	FILT	2508	ZSDAPU	125	ZSDPU	1LPU			2320	351	2540	곧	ŝ	450	FId_FP	2	300.	365	9223-A-	F-Turb
1	12302			AQ			1	1	1	1	1			x	X	x	x	x	X	x	X	X	x	x	x
2	12302 Bottom			AQ			1			1	1			x	X	X		x	X			X	x		
3	12307			AQ			1	1	1	1	1			X	X	X	X	х	X	x	X	X	x	x	x
4	12307 Bottom			AQ			1			1	1			x	X	x		x	X			X	x		
5	12309			AQ			1	1	1	1	1			x	X	X	X	x	X	х	х	X	x	x	x
6	12309 Bottom			AQ			1			1	1			x	X	X		x	X			X	x		
7	15428			AQ			1	1	1	1	1			x	X	x	X	х	X	х	х	X	x	x	x
8	15428 Bottom			AQ			1			1	1			x	X	X		x	X			X	x		

Transfers	Relinquished By	Date/Time	Received By	Date/Time	Cooler Temp:				Client Special Instructions:
1					#	T#	Obs.	Corr.	
2					1				
3					2				Lab Use Only:
Note: Relinquishing sample(s) and signing the COC, client agrees to accept and is bound by the ELS Standard Terms and Conditions. All fields with an asterisk (*) are required to be completed.									

Page 1 of 1

Appendix F: Data Review Checklist and Summary Shells

Data Review Checklist

Data Set Name Event File Name Result file Name

Data Format and Structure

or mat and ser acture
A. Are there any duplicate tag ID numbers?
B. Are the <i>Tag prefixes</i> correct?
C. Are all Tag ID numbers 7 characters?
D. Are TCEQ station location (SLOC) numbers assigned?
E. Are sampling <i>Dates</i> in the MM/DD/YYYY format?
F. Is the sampling <i>Time</i> based on the 24-hour clock?
G. Is the <i>Comment</i> field filled in where appropriate?
H. Were Submitting Entity, Collecting Entity, and Monitoring Type codes used correctly?
I. Is the sampling date in the <i>Results</i> file the same as the one in the <i>Events</i> file?
J. Values represented by a valid parameter (STORET) code with the correct units?
K. Are there duplicate parameter codes for the same <i>Tag ID</i> ?
L. Are there any invalid symbols in the GT/LT field?
M. Are there any Tag numbers in the <i>Results</i> file that are not in the <i>Events</i> file?
N. Have confirmed outliers been identified?
O. Have grab data taken during 24-hr events been reported separately as RT samples?
P. Are all reported parameter codes in the appropriate QAPP's DQO table?
Q. Are all reported monitoring stations in the appropriate Coordinated Monitoring Schedule?

Data Quality Review

A. Are all values reported at or below the AWRL? B. Have the outliers been verified? C. Checks on correctness of analysis or data reasonableness performed?	
	e AWRL?
C Checks on correctness of analysis or data reasonableness performed?	
c. checks on correctness of analysis of data reasonableness performed:	lata reasonableness performed?
D. Have at least 10% of the data in the data set been reviewed against the field and laborate data sheets?	ata set been reviewed against the field and laboratory
E. Are all parameter codes in the data set listed in the QAPP?	et listed in the QAPP?
F. Are all stations in the data set listed in the QAPP?	n the QAPP?

Documentation Review

A. Are blank results acceptable as specified in the QAPP?
B. Were control charts used to determine the acceptability of field duplicates
C. Was documentation of any unusual occurrences that may affect water quality included in the <i>Comment</i> field
D. Were there any failures in sampling methods and/or deviations from sample design requirements that resulted in unreportable data?
E. Were there any failures in field and laboratory measurement systems that were not

res	solvable aı	nd result	ed in unre	reportable data?
Data Sub	omittal	Summ	ary	
Date Rang	ge			
Tag Range				
Submittin				
Collecting				
Project Ma				
Number o				
Number o				
Number o				
Unreporta			D	
Tag ID	Paramet	er Code	Reason	П
			-	
Monitorin RT Monitorin MT Ev RT				
Data Corr Check TKN <nh3< td=""><td>Failu</td><td></td><td>sonable</td><td>eness Checks</td></nh3<>	Failu		sonable	eness Checks
Verified M	Iin/May	Outlie	• c	
Parameter			of Outlier	ors
PQL>LOC)			
Parameter		Number	Reason	
		-		
A 1 1 3	г .	1 D		
Actual vs 1				
Parameter 00010	Expe	ected	Actual	Reason
00010				
00053				

00061 00062 00078

00094		
00300		
00301		
00400		
00410		
00530		
00610		
00625		
00630		
00665		
00940		
00945		
01351		
31699		
31701		
31704		
32213		
70294		
70953		
72053		
74069		
82078		
89835		
89926		
89965		
89966		

Comments

☐ I certify that all data in this data set meets the requirements specified	
Chapter 5, Subchapter R (TWC §5.801 et seq) and Title 30 Texas Administ Subchapters A & B.	rative Code Chapter 25
•	Checklist.
- This data see has been reviewed asing the street a in the Bata Neview	Circollist.
LCRA Data Manager:	Date:
☐ This data set has been reviewed using the criteria in the Data Review LCRA Data Manager:	